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Foreword

Computer science and the IT industry are currently undergoing significant and
fundamental changes at many levels. On the one hand, the business model has
evolved from a manufacturing industry (software and hardware) to a service industry
based on cloud providers offering hardware and software as a service. This alone has
enormous implications for the technology as the economies of scale and the highly
shared infrastructure of the cloud create opportunities for optimization and special-
ization not available before. On the other hand, the relevant applications, use cases,
and workloads have become mainly data driven, involving extraordinary amounts of
data and very tight performance as well as efficiency requirements. These changes
are happening at a time where limitations at the physical and economic level prevent
us from producing faster general-purpose processors (CPUs), a drawback that is
being addressed through hardware specialization where use-case-specific hardware
is developed to be able to meet the requirements of common applications.

The Scalable Data Management for Future Hardware of the DFG priority
program has tackled these challenges from the perspective of data processing, a cor-
nerstone of data science and the machine learning revolution we are experiencing.
Data management systems, and especially relational databases, are still one of the
largest software industries. Neither the cloud nor machine learning has changed that.
However, their role and how they are used have changed and are quickly evolving.
For instance, on the software side, now all major database machines support vector
search and large-scale vectors, something that would have been difficult to imagine
just 5 years ago given the characteristics of vector data and the operations performed
over it. On the hardware side, there is a growing amount of examples from both
industry and academia of tailoring database engines to new hardware (networking,
new memory models, new processors, accelerators, etc.). The researchers in the
program have pioneered and led many of these efforts, their work having now
become a major reference for anybody exploring the area. The program has also
been a great, and much needed, source of talent covering both the data management
and the hardware specialization side, creating the basis for future research and
education programs.

v



vi Foreword

The chapters in this book provide a glimpse of the highly innovative work done as
part of the program, covering topics that encompass from new memory models and
new memory technologies to heterogeneous computing, tackling research questions
related to high-scale parallelism, consistency, bottlenecks caused by interconnects,
reconfigurable computing, modern networking, and non-volatile memory in the
context of various applications (query processing, graph databases, event process-
ing, etc.). The work reported provides a comprehensive coverage of the topics
and provides excellent examples of the opportunities new hardware has to offer.
It is important to note that the topics explored do so in great detail, not only in
terms of describing a design but also exploring the practical implications for data
management systems and database engines in terms of how their architecture needs
to evolve. It is also interesting that the book covers a very insightful spectrum
between ideas that can be applied to existing engines without having to do major
changes to radically new designs that open up intriguing opportunities for future
systems.

Data management is and remains a key component of the data science revolution,
maybe attracting less attention than machine learning and large language models but
still acting as a key enabler and a source of ideas to improve the performance and
efficiency of what are now the largest data processing engines ever built. But data
management systems need to evolve with the times, and that requires to adapt and
adopt new hardware. This book summarizes an impressive amount of work done in
the priority program in this direction, with many valuable insights that will serve as
inspiration for future work and also having trained the first generation of researchers
equipped to address the challenges ahead of us.

Zurich Gustavo Alonso
June 2024



Preface

Data management is one of the central tasks in many applications and an indispens-
able component in modern IT stacks. The spectrum of applications ranges from
managing structured business data in ERP or ordering systems, over answering
queries in decision-support systems, backends on cloud applications, or embedded
systems, to managing data and models in AI applications. The requirements have
continued to evolve in recent years: While initially the management transactional
data with consistency (ACID) guarantees was the main tasks of database systems,
modern data management solutions now also support complex analyses on very
differently structured data (from tables, graphs, and semi-structured data to texts,
images, and videos) through to highly dynamic data streams. Data management
systems typically provide abstractions for the application layers above them: data
structures and models for representing data, query languages for accessing and
processing data, and system abstractions for transparently leveraging storage hierar-
chies or parallel or distributed architectures. However, the efficient implementation
of data management requires leveraging the underlying layers down to the hardware,
with the boundaries constantly shifting. While disk-based external storage used
to be the bottleneck in the past, main memory accesses or concurrency control
in multi-core systems are now performance critical. At the same time, hardware
developments in recent years offer a wide range of possibilities for efficient use in
data management tasks. Examples are:

• Multi-core CPUs: Modern CPUs offer up to 100 cores at the commodity level,
and next-generation CPUs are expected to offer several hundred cores. To enable
high levels of parallelism, some architectures already provide hardware support
for the necessary synchronization, such as transactional memory. Leveraging this
parallelism for database processing is still an open question.

• Co-processors such as GPUs and FPGAs: Special-purpose computing devices
such as GPUs and FPGAs allow for much higher levels of parallelism, sig-
nificantly accelerating compute-intensive tasks, including database tasks. In
addition, heterogeneous hardware designs such as coupled CPU-FPGA and
CPU-GPU architectures, as well as fast interconnects between the CPU and

vii
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co-processing units, represent a trend toward tighter integration that makes
expensive data transfers cheaper or even unnecessary.

• Novel memory and storage technologies like NVRAM and SSD: Modern in-
memory database system solutions still rely mostly on block-based media for
ensuring persistence of data. In recent years, memory technologies such as
non-volatile or persistent memory (PMem) have promised byte-addressable
persistence with latencies close to DRAM. Though commercial PMem products
are discontinued, emerging technologies such as CXL offer new opportunities
for architectures with remote, shared, or disaggregated memory. These memory
technologies together with advances in SSD performance require to revisit
memory and storage hierarchies in data management systems.

• High-speed networks: Both in scale-up and scale-out scenarios, efficient inter-
connects play a crucial role. Network technologies like RDMA (Remote DMA),
e.g., based on Gbit Ethernet or InfiniBand, provide direct access to memory
of remote nodes. Furthermore, smart network interface cards (NIC) can act as
accelerators for in-network processing. Utilizing these technologies in database
systems requires new concepts.

Based on these observations, we derived the thesis that data management archi-
tectures need to undergo a radical shift to meet current and future requirements.
Since 2017, we have been tackling this challenge within the framework of the
DFG-funded priority program SPP 2037 “Scalable Data Management for Future
Hardware.” The goal of the priority program was to bring together researchers
from the fields of database systems, operating systems, and distributed systems to
investigate the possibilities and consequences of modern and future hardware in
system architectures for data management.

In two 3-year phases, a total of 12 projects from 22 PIs investigated a wide
range of data management architectures in conjunction with current hardware
developments. The program was accompanied by two Dagstuhl seminars (Seminar
18251, “Database Architectures for Modern Hardware,” 2018, and Seminar 21283,
“Data Structures for Modern Memory and Storage Hierarchies,” 2021) as well as
regular internal workshops. The results of this priority are summarized in this book.
In nine chapters, the authors present results primarily from the second phase of the
program.

In Chap. 1, “ADAMANT: Hardware-Accelerated Query Processing Made Easy,”
an approach for the integration of co-processing units such as FPGA and GPUs
is presented that supports cross-device parallelization of SQL queries. Furthermore,
techniques for FPGA-based query-specific hardware acceleration as well as approx-
imate query processing are introduced.

Heterogeneous hardware environments are also addressed in Chap. 2, “Query
Processing on Heterogeneous Hardware,” by exploring methodologies for executing
database queries on any processor without manual adjustments. For this purpose,
a compilation of database and stream processing queries into optimized code is
discussed considering the use of GPUs, workload distribution, and data transfer
bottlenecks, e.g., by examining NVLink 2.0 technology.
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Next, in Chap. 3, “Efficient Event Processing on Modern Hardware,” the domain
of complex event processing with both continuous queries and analytical ad
hoc queries is considered. Multi-core CPUs and GPUs are explored for efficient
processing of pattern-matching operators, while modern storage technologies are
used for ingestion and ad hoc queries.

In Chap. 4, “Hybrid Transactional/Analytical Graph Processing in Modern Mem-
ory Hierarchies,” the authors exploit modern memory hierarchies including persis-
tent memory for graph database systems supporting hybrid transactional/analytical
(HTAP) workloads. In addition, graph analysis in GPU-based accelerators with ded-
icated memory is enabled by efficient mechanisms for data transfer and consistency.

Chapter 5, “MxKernel: A Bare-Metal Runtime System for Database Opera-
tions on Heterogeneous Many-Core Hardware,” presents a runtime environment
that provides control flow primitives called MxTasks that can be annotated with
application-specific hints. Using such hints, the runtime system provides automatic
synchronization, prefetching, and dynamic resource partitioning.

The authors of Chap. 6 “Scaling beyond DRAM without Compromising Perfor-
mance” present approaches for scaling database systems beyond the main memory
capacity of a single server. This includes system approaches for a storage engine and
PMem-optimized storage for transactional workloads, a programming model for
disaggregated systems, and a just-in-time query compilation framework for ARM
processors.

The topic of Chap. 7, “ReProVide: Query Optimization and Near-Data Process-
ing on Reconfigurable SoCs for Big Data Analysis,” is near-data processing using
FPGA accelerators. Based on a SoC architecture, a reconfigurable approach for
flexible loading and execution of query operators on relational and streaming data
is presented.

The work presented in Chap. 8, “Scalable Data Management on Next-Generation
Data Center Networks,” examines how modern network infrastructure such as
RDMA affects the design of disaggregated databases. In addition to RDMA,
programmable networks are considered for database processing by presenting in-
network OLTP processing and a network-driven data shuffling approach.

Finally, the authors of Chap. 9, “Managing Very Large Data Sets on Directly-
Attached NVMe Arrays,” discuss the impact of modern fast storage devices such
as NVMe arrays on the architecture and implementation of storage engines for
database systems. Based on an evaluation of the performance tradeoffs, they show
that the aggregated bandwidth of ten or more NVMe SSDs can approach main
memory.

We hope that this book will not only give readers an insight into the results of
the program but also provide inspiration for future work beyond the database area.
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Especially a comprehensive system view as a combination of data management,
operating systems, distributed systems, and computer architecture is on the one hand
necessary to address the requirements from practice and on the other hand offers
great potential for innovative ideas and exciting research questions.

Ilmenau, Germany Kai-Uwe Sattler
Garching, Germany Alfons Kemper
Garching, Germany Thomas Neumann
Dortmund, Germany Jens Teubner
June 2024
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Chapter 1
ADAMANT: Hardware-Accelerated
Query Processing Made Easy

David Broneske , Vitalii Burtsev , Anna Drewes , Bala Gurumurthy ,
Thilo Pionteck , and Gunter Saake

Abstract We present ADAMANT, an adaptive data management architecture
for evolving heterogeneous hardware/software systems. The ADAMANT system
enables plug’n’play integration of co-processors such as GPUs and FPGAs, pro-
vides a unified runtime that supports cross-device parallelization of SQL query
execution on arbitrary co-processors at runtime, and supports multi-query process-
ing. We discuss the concepts behind and performance of ADAMANT following
an example query (TPC-H Q6), present different execution models for cross-
device execution, and provide an FPGA hardware architecture that allows the
implementation of query-specific hardware accelerators at runtime. In addition,
we introduce a new approach for approximate query processing for FPGAs. Our
performance analysis concludes that the use of hardware accelerators and device-
specific implementations of query operators as part of a common system can provide
significant speedups over state-of-the-art query execution engines.

1.1 Introduction

The database community faces the extreme challenge that the volume of data to
be processed has increased exponentially in recent years. While the amount of data
created, captured, copied, and consumed in 2020 was approximately 64.2 zettabytes,
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it is predicted that it will grow to more than 180 zettabytes by 2025 [42]. CPU-based
database systems reach their performance and scalability limits with this amount
of data, especially with regard to the memory wall, power consumption, and fast
response times. This requires new approaches at the hardware and algorithm level,
such as integrating co-processors into database systems or approximating query
processing to lower response times.

The traditional approach to data analytics has been to process data in batches,
often taking minutes or hours to yield results. This offline processing contrasts
sharply with the goals of interactive analytics, which aims to deliver query responses
within seconds, thereby enabling rapid hypothesis testing. Approximate query
processing (AQP) has emerged as a solution, allowing database systems to provide
aggregated responses to queries on large datasets in a timely way, thereby bringing
us closer to the ideal of interactive analytics.

In order to speed up the exact response to database queries, the use of heteroge-
neous hardware architectures appears to be promising. In heterogeneous systems,
CPUs are supported by specialized co-processors such as Graphical Processing
Units (GPUs) or Field Programmable Gate Arrays (FPGAs). The advantage of
heterogeneous hardware systems is that multiple operations can be performed in
parallel on different devices. Query operators can be mapped to the hardware device
for which the most efficient implementation of an operator is available. However,
these benefits are countered by significant challenges. First, a mechanism must be
provided to integrate co-processors with their supported set of query operators into
the database management system (DBMS), and second, all co-processors require
custom operator implementations to process the queries. In particular, the provision
of operator implementations for a specific hardware device can be very time-
consuming and requires domain knowledge.

To address these challenges, we developed ADAMANT, an adaptive data
management solution for evolving heterogeneous hardware/software systems.
ADAMANT allows new co-processors to be integrated without reworking other
components of the query engine. This is supported by pluggable interfaces that
encapsulate all interactions with co-processors and a unified runtime that handles
execution on arbitrary co-processors, with a chunked execution model for scalable
query processing.

We show the features, flexibility, and benefits of ADAMANT through Query 6
of the TPC-H benchmark [45] throughout this chapter. In particular, we will discuss
the execution model of ADAMANT, which is based on (device-specific) primitives,
the influence of the underlying hardware on an appropriate primitive realization,
and how primitive fusion can increase efficiency. We will present an approach to
produce hardware accelerators for arbitrary queries on an FPGA at runtime and
discuss different execution models for cross-device execution of queries on CPUs
and GPUs. In addition, we will present approaches for multi-query processing. For
approximate query processing, an approach based on the concept of Bag of Little
Bootstraps (BLP) will be discussed.

The rest of the chapter is organized as follows: Sect. 1.2 presents the over-
all structure of ADAMANT and discusses the specific challenges for realizing
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plug’n’play capabilities in DBMSs. Section 1.3 presents a novel approach to an
FPGA-based approximate query-processing accelerator. The concept of device-
specific primitives is introduced in Sect. 1.4, which is used to discuss the FPGA
overlay architecture in Sect. 1.5 and the cross-device execution models in Sect. 1.6.
Optimization possibilities for multi-query processing are presented in Sect. 1.7. The
chapter ends with a conclusion in Sect. 1.8.

1.2 Challenges for ADAMANT’s Plug’n’Play Architecture

For an effective integration of modern heterogeneous processors into the query-
processing pipeline, there are several adaptations necessary, each posing a specific
challenge. The challenges are (C1) the tuning for device-specific processing capa-
bilities, (C2) the exploitation of the full processing power, and (C3) the effective
simultaneous execution of multiple queries at once. We exemplify necessary
changes to the database system in Fig. 1.1 by using the standard database processing
workflow split into query translation and query execution [39]. In query translation,
the SQL query is parsed and standardized, after which optimization takes place,
which usually transforms the logical query graph into a physical optimized execu-

SQL Translation &
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Standardization

Optimization

Code Compilation

Execution

Abstract
Primitives

Device-Specific Primitives

CPU GPU FPGA

Logical Optimization

Physical Optimization
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FPGA Overlay

Abstract
Primitive
Graph

Device-
specific
Primitive
Graph

Approximate Query
Processing

Query Translation Query Execution

Section 4

Section 4.1

Section 5
Section 3

Section 6

SQL
Query

SQL
Query

SQL
QuerySQL

Query

Section 7
Result

Fig. 1.1 Adapted query-processing workflow when incorporating heterogeneous co-processors
in a plug’n’play fashion. White components represent unchanged steps, while blue components
represent adaptations to the standard process
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tion plan. This plan is then prospectively compiled and executed. In the following,
we outline the necessary changes to this query-processing workflow in order to
overcome the challenges.

1.2.1 C1: Device-Specific Processing Capabilities

Due to their task-based specialization, processors and co-processors provide dif-
ferent processing capabilities [6, 37, 38]. For instance, CPUs provide out-of-order
execution and branch prediction, which is why they are best suited for latency-
critical tasks. In contrast, GPUs offer massive data-parallel processing capabilities
in a SIMT-fashion (single instruction, multiple threads), which is why they are
optimized for throughput. FPGAs, on the other hand, can be programmed for any
number of operations and sequences of operations. However, due to their limited
space and lower clock-frequency, data parallelism is limited, and small pipelines
cannot exploit the FPGA’s advantages compared to CPUs or GPUs. As a result,
the query plan (e.g., operator-at-a-time processing on GPUs vs. pipelining on the
FPGA) and also implementations of operators (branching on CPU vs. branch-free
processing on GPU) differ per involved device.

Hence, we adapted the standard query-processing workflow by adding primi-
tive definitions (suboperations of database operators introduced in Sect. 1.4) and
respective code bases per device in our ADAMANT system. Hence, when co-
processors are plugged in, also respective primitives optimized for the device have
to be provided. Furthermore, physical optimization has to be extended to optimize
for the dimension of choosing the right device-specific primitive. Moreover, our
adapted query-processing workflow has a special step for configuring the FPGA
overlay (see Sect. 1.5), which is a necessary step for incorporating the FPGA into
the workflow.

1.2.2 C2: Exploitation of Full Processing Power

When overcoming the first Challenge C1, the system is able to effectively incorpo-
rate different co-processors and efficiently execute a single query on a single device.
Given the possibility to use arbitrary (co)-processors from a system, the challenge
arises to put all (co)-processors concurrently into action. Specifically, the system
would enable a distribution of subtasks and data chunks to the different devices
and mind the memory restrictions of the devices. Furthermore, when using FPGAs,
their configuration time may hinder their application because the resulting latency
overshadows their performance benefits compared to other devices, which keeps
this processing power unused.

In order to overcome this challenge, we extend the query execution capabilities
of the ADAMANT system by allowing to start executing the query processing in
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an interpreted fashion. This effectively hides any compilation or configuration time
(see Sect. 1.6). Furthermore, we provide a chunking approach that allows for cross-
device query execution and even executing larger-than-memory workloads.

1.2.3 C3: Effective Parallel Execution of Multiple Queries

Due to our contributions for C1 and C2, we are now capable of executing a single
query across different devices. However, the usual use case is to serve several
user requests in parallel, leading to multiple queries being processed concurrently.
The question is whether concurrently running queries with enough similarity can
be optimized by sharing intermediate results when executing. This is a feature
that would influence the final query plan and is, thus, impacting logical query
optimization. Furthermore, since many users are on an exploratory search for data,
their results do not always need to be 100 % exact. Hence, this is an additional
optimization that could decrease the load on the system and lead to a better
throughput when running multiple queries.

To this end, we investigate mechanisms to share and reuse results of concurrently
running queries (see Sect. 1.7), where the impact of query similarity on the resulting
performance needs to be regarded. Moreover, we propose an alternative approximate
query execution for exploratory queries that do not need the exact query result (see
Sect. 1.3).

1.3 Approximate Query Processing

Approximate query processing (AQP) is essential for rapidly analyzing large
datasets where traditional methods are inefficient due to high computational costs
and long processing times. AQP strategies balance accuracy and performance by
providing fast, though approximate, insight into the data. The following are the main
AQP methodologies, each offering solutions to specific data analysis problems that
we considered as a basis for developing our own solution.

1.3.1 Approximation Approaches

The online aggregation method by Hellerstein et al. [25] introduces a technique that
incrementally refines query results, enabling users to halt the process when results
fall within an acceptable error range. This method facilitates interactive data analysis
by offering initial rough estimates that progressively become more accurate, thereby
considerably shortening the time to reach preliminary insights.
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The Stratified Sampling approach, as showcased in BlinkDB [1] and VerdictDB
[32], enhances AQP effectiveness by smartly dividing the dataset. This technique
segments the dataset into uniform groups, from which samples are independently
drawn, boosting sample representativeness, particularly in diverse datasets. The
LAQy framework [40] improves stratified sampling by enabling efficient and
adaptive sample reuse. It allows for partial reuse of samples by dynamically
adjusting them based on the changing predicates of query workloads.

Machine Learning Models for AQP, illustrated by DBEst [30] and DeepDB
[26], utilize past query behaviors and data features to anticipate query results.
This sophisticated strategy employs machine learning’s predictive capabilities to
estimate query responses, notably lowering the computational demand by avoiding
conventional exhaustive query evaluations.

The AQP++ framework, as developed by Peng et al. [33], introduces a trans-
formative approach by synergizing sampling-based techniques with aggregate
precomputation (AggPre) for enhanced interactive analytics. This integration not
only speeds up query answering by utilizing precomputed aggregates to refine
estimates but also maintains unbiasedness and balances between speed, accuracy,
and preprocessing costs. Key to its innovation is the inclusion of Bootstrap Methods
for Error Estimation, which utilizes resampling to offer a robust framework for
assessing the precision of AQP outcomes.

Bootstrapping [15] is a widely used statistical algorithm for the evaluation of data
distributions in datasets. This technique creates a series of resamples from smaller
subsets of the original dataset by repeated sampling with replacement. Because of its
statistical foundation, bootstrapping is widely used in machine learning. However,
bootstrap-based algorithms typically face a significant computational burden due to
the resampling process. The size of the resamples in bootstrapping is comparable
to the size of the original sample, contributing to the procedure’s computational
intensity.

1.3.2 Bag of Little Bootstraps

The concept of bootstrapping in statistics involves generating numerous subsamples
from the original dataset by resampling with replacement, to form an empirical
distribution. This method allows for the estimation of the population distribution
based on these subsamples. However, traditional bootstrapping requires processing
a large number of data, resulting in significant computational demands, which limits
its applicability in various fields.

To address the computational challenges of traditional bootstrapping, Kleiner et
al. introduced the Bag of Little Bootstraps (BLB) algorithm [27]. This approach
minimizes computational load by utilizing smaller subsamples for resampling and
then scaling the results to match the size of the original dataset. This method
significantly reduces the amount of data that needs to be processed, making the
bootstrapping process more efficient with negligible compromising on accuracy.
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When applying the BLB algorithm, a database query is executed on each
resampled subset to obtain bootstrap estimates. These individual estimates are then
averaged to derive an approximate answer to the original query. The BLB algorithm
has demonstrated that to achieve a 95% confidence level in query answers, it
is sufficient to use subsamples sized according to a specific formula, where the
subsample size b is proportional to the original data size n as b = nγ raised to
a power γ between 0.6 and 0.9.

This scaling of subsample size, as recommended by the BLB algorithm, means
that for a large dataset, the amount of data to be processed can be dramatically
reduced, by orders of magnitude. For example, for a dataset of one million values,
only twenty to thirty subsamples of approximately four to sixteen thousand values
would need to be processed to obtain reliable results, demonstrating the efficiency
of the BLB algorithm in reducing computational requirements.

The BLB algorithm’s approach to optimizing the balance between accuracy
and computational burden by strategically selecting subsample sizes represents
a significant advance in the field of statistics. By enabling efficient processing
of large datasets while maintaining a high level of confidence in the results, the
BLB algorithm offers a practical solution for a wide range of applications and has
the potential to transform the way statistical analysis is conducted in large data
environments.

1.3.3 Streaming BLB

In order to address the computational demands of traditional bootstrapping and to
bring bootstrapping to aggregate approximate query answering, we have developed
our approach from standard BLB to allow streamed and pipelined data processing.
Several important elements of the algorithm have been revised and replaced. In
particular, Poisson bootstrapping [3, 35] allows stream data processing and reduces
data transfer, using a method where a subset of distinct values is resampled, each
multiplied by a Poisson-distributed coefficient as an estimate of the frequency of
occurrence for that particular point in the resample. By crossing the BLB algorithm
with Poisson-distributed resampling coefficients, the n-fold resampling of BLB is
effectively transformed into a b-fold computation.

Figure 1.2 illustrates the Streaming BLB approach versus the traditional BLB
method. In the naive BLB, an entry is selected randomly n times from a subsample
of size b, requiring n memory accesses per resample. Each entry’s representation
in the resample, indicated by a numerical value next to each group, shows the
resampling coefficient, which varies across resamples. The right side shows the
Streaming BLB method, where resampling coefficients ki are derived from a
distribution, often approximated by a Poisson distribution with λ = n/b, facilitating
the generation of b random numbers. For large λ, the Poisson can be approximated
with a normal distribution (μ = λ, σ = √

μ). Data normalization ensures total
resampling coefficients match the original data size n.
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Fig. 1.2 Naive bootstrapping
(left) vs. Streaming BLB
(right) [8]
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The original BLB algorithm lacks data streaming capabilities. Streaming BLB
overcomes this by allowing data streaming through its coefficient-based bootstrap-
ping method, enabling parallel processing and hardware acceleration. Yet, this
method demands a high-performance generation of random variables with specific
probability distributions.

1.3.4 FPGA-Based Bag of Little Bootstraps

Taking into account all the advantages of BLB described above and our modifi-
cations to make this algorithm more applicable to accelerators, we chose FPGAs
as the test platform. On the one hand, FPGAs offer pipelining and parallelization
capabilities that are unmatched by other systems. On the other hand, they are very
efficient in terms of power consumption.

1.3.4.1 Gaussian Random Number Generation (GRNG) on FPGAs

The efficient generation of random numbers with a given distribution is critical to the
overall performance of the BLB streaming approach. Several strategies [2, 28, 44]
balance performance with resource demands, with the Multihat [31] algorithm
standing out for its efficiency in streaming resampling, producing a random number
each clock cycle. It alters the probability density of uniformly distributed random
numbers using additional bits and multiplexers, closely approximating a Gaussian
distribution with an 8σ tail accuracy. The Streaming BLB method reduces the
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Fig. 1.3 Structure of the
BLB Block Design [8]
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need for true random numbers by aligning the resampling rate with the expected
probability distribution.

1.3.4.2 BLB Block Design

The overall structure of the BLB hardware accelerator is shown in the top part of
Fig. 1.3. Each BLB core processes one subsample per time step, while the number
of resamples per time step is determined by the number of streaming BLB instances.
For each subsample, the individual query response is determined outside the BLB
core in a preprocessing step that produces row-wise subsample results, either on
CPU or on FPGA. In a post-processing step, the CPU aggregates the results of
the individual BLB cores derived from a combination of resamples and subsample
counts.

The middle part of Fig. 1.3 shows the structure of a BLB streaming instance,
which is responsible for resampling the data. A coefficient generator produces a
random value every clock cycle, split for query multiplication and output normal-
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ization, ensuring coefficient sums align with the original dataset size. Parameters for
the coefficient generator are obtained from the same stream as data for resampling.

The bottom part of Fig. 1.3 shows details of the coefficient generator, with
Gaussian values x set to x′ = σx + μ. The Multihat GRNG provides a random
number for each cycle, supporting a flexible design for alternative generators.
Configuration values define resampling coefficient distribution parameters for
processing in Streaming BLB.

1.3.5 Test Setup

For evaluation, we tested the performance of the BLB streaming approach for TPC-
H Q6 [45] with subsamples on different scale factors (1–100) as an example of
a data-intensive query with a heavy aggregation load. The testing was done on
a Xilinx ZC706 board with a Zynq-7000 SoC FPGA, running at 125 MHz. For
performance evaluation, the FPGA solution is tested against an Intel Core i7-6850K
(12 threads, 4 GHz) CPU and an AMD Ryzen 7 5800X (16 threads, 3.6 GHz) CPU.
Data storage is facilitated by a Patriot Burst SATA III 2.5" SSD.

The FPGA test system is shown in Fig. 1.4. Subsamples are created on the host
CPU and then transferred to the FPGA where the query result for each subsample
is computed. The results are then passed to the BLB unit. Here, subsample entries
are multiplied by resampling coefficients, and data is aggregated at the output stage.
When subsample processing is complete, the system prepares output data and sends
it to the host.

The Xilinx DMA/Bridge Subsystem for PCI Express facilitates data transfers
via the PCIe interface on the ZC706 accelerator board, which supports two
AXI4-Stream channels. Consequently, it can host up to two BLB cores, while
the number of resampling threads can scale with the FPGA’s capacity, reaching
64 in our setup. For processing TPC-H Q6, the FPGA handles extra arithmetic
operations, including comparisons, additions, and multiplications, utilizing 32-bit
floating-point arithmetic for enhanced precision and optimization opportunities.
This implementation leverages the LOGIcore Floating Point v7.1 [46] IP core for
streamlined data processing across the AXI4-Stream interface.

The system’s result-processing logic comprises a multiplexer that compiles data
packets from the resampling streams, answer accumulators, and normalization

Fig. 1.4 Test system
structure [8]
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Table 1.1 Zynq XC7Z045
SoC resource utilization

2 BLB cores One resampling

Resource Utilization % BLB instance

LUT 78.19 2977

LUTRAM 23.92 357

FF 57.83 3587

BRAM 6.69 0

DSP 64.44 9

Fig. 1.5 Logic placement on
Zynq XC7Z045 SoC [8]

coefficients. These packets are then dispatched to the host via PCI Express XDMA
for final processing and answer generation (Table 1.1).

Figure 1.5 illustrates the layout of Streaming BLB instances within the BLB core.
Each core consists of 32 Streaming BLB instances. The diagram highlights a full
BLB core in green on the bottom. At the same time, the upper side displays another
core, segmented into 32 individual Streaming BLB instances, each represented
by a different color, such as the pink section in the upper right. The logic for
processing TPC-H Q6 is positioned left from the yellow PCIe DMA block. Due
to FPGA resource constraints, the system supports a maximum of 32 Streaming
BLB instances per core.

The CPU-based reference algorithm is developed in C++ using GCC v11.3.0
on Ubuntu 22.04. Its performance significantly depends on the choice of Gaussian
random number generator. We explore this by comparing the standard C++
library’s GRNG and the Ziggurat algorithm from the GNU Scientific Library [17].
For parallel execution, we employ OpenMP v4.5 [9].
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Fig. 1.6 Execution time for TPC-H Q6 varying data size in log scale [8]

1.3.6 Evaluation

We evaluate the performance of the streaming BLB algorithm for the TPC-H
Q6 query on both FPGA and i7-6850K CPU platforms, as shown in Fig. 1.6. As
discussed in Sect. 1.3.2, the subsample size depends on two values. The first is the
number of values in the dataset (scale factor, SF) and γ . We choose the TPC-H
dataset with SF1 and γ = 0.6, resulting in 10 · 103 values as the leftmost point on
the graph. The rightmost point corresponds to a set of subsamples created from a
dataset with SF100 and γ = 0.75, resulting in (∼4000 · 103) values.

The CPU’s setup includes a single BLB core with eight Streaming BLB instances
across CPU cores. Similarly, the FPGA setup consists of one BLB core and eight
Streaming BLB instances. The FPGA, however, could support more cores and
instances with negligible overhead. FPGA time measurements account for PCIe data
transfer delays.

Our results indicate that the CPU performs better for smaller datasets, but
FPGAs excel as data size increases, surpassing CPU around 60,000 entries (see
green arrow), showcasing FPGA’s resampling efficiency. The CPU performance,
which relies heavily on generating normal distributions, improves with the Ziggurat
generator from the GSL library but still lags behind FPGA performance at about
200,000 entries, as shown by the yellow arrow.

The analysis underscores the superior efficiency of the FPGA even with modest
data volumes, with CPU limitations primarily due to random number generation.
Initially, FPGA’s performance is hampered by PCIe setup times, which diminishes
with larger datasets. Eventually, the FPGA’s constraint shifts to its interface
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Fig. 1.7 Execution time over
threads [8]

Fig. 1.8 Clock Cycles per
Byte [8]

bandwidth, achieving twice the speed of the best CPU setup at 40 million entries, as
evidenced by the logarithmic scale comparison.

Figure 1.7 displays the Streaming BLB algorithm’s execution time for TPC-H
Q6, analyzing a 6 billion entry dataset, roughly 1 TB. With s = 10 subsamples and
r = 100 resampling iterations per subsample, as recommended by Kleiner et al. [27]
for 95% accuracy, the subsample size is around one million entries (15.3 MB). The
FPGA consistently outperforms the CPU in single-threaded operations, maintaining
this advantage against the newer R7-5800X CPU.

Figure 1.8 illustrates the Clocks Per Byte (CPB) efficiency with varying Stream-
ing BLB instances under the same setup as prior measurements. This comparison
helps evaluate how the number of instances affects the efficiency of the algorithm.
Despite its high clock speed, the CPU requires many cycles for random number
generation, a challenge solved by the FPGA in one clock cycle. The Ryzen
CPU reaches its peak efficiency at 16 threads with a CPB of approximately 48,
showcasing the algorithm’s scalability with increased parallelism. In contrast, the
FPGA’s efficiency, constrained only by resource availability, is significantly higher,
achieving about 50 times more efficiency than the CPU, even considering the
logarithmic scale. Given the 32-bit data processing, the ideal FPGA efficiency would
be CPB = 0.25. However, due to PCIe XDMA transfer overheads, the achieved
efficiency is CPB = 0.58.
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1.3.7 Conclusion

We presented an FPGA-based architecture for approximate query-processing accel-
eration. It relies on a Streaming BLB algorithm for efficient resampling. This
approach significantly reduces data transfer, addressing the common bottleneck of
data transfer rates in processing accelerators. The FPGA implementation shows a
higher performance (from 2 times) compared to CPUs at moderate to large sample
sizes, including data transfer times. Compared to CPUs, FPGAs are more efficient
at generating random numbers based on multihat algorithm.

1.4 Device-Specific Primitive Graphs

The usual execution unit in traditional database systems is on the granularity of
operators. However, given the Challenge C1 of exploiting device-specific computing
capabilities, the operator level is too complex and broad to give a device-specific
implementation per new device. This is why we introduce the concept of primitives
and their tuning in the following sections.

1.4.1 Primitives

1.4.1.1 Motivation

One of the key motivations for tuning algorithms for different modern processors
is the diversity in their processing capabilities. Specifically, modern devices support
different paradigms of parallelism and have dedicated hardware units for efficient
parallel execution. For example, a GPU supports massive data-parallel execution
via multiple lightweight cores. On the other hand, FPGAs support the execution
of deep processing pipelines. Hence, with devices supporting different levels of
parallelism, we must also investigate ways to exploit their capabilities for faster
database operations [19].

In order to minimize the implementation efforts as well as to explore the different
device capabilities, database operators are split into granular functions that can
be reused across multiple database operators, known as primitives [24]. Many
researchers have proposed as well as investigated primitives of database operators
for co-processors [5, 34]. In our ADAMANT project, we have surveyed these
existing primitives and used them for creating a primitive-based query execution
plan.
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Fig. 1.9 DBMS primitives in
hierarchy based on [19] Operator (e.g. Equi-join, Group-by aggregation)

Algorithm (e.g. Hash Join, Hash aggregation)

Composed Primitives (e.g. Hash get,
Hash put, Hash aggregate)

Atomic Primitives (e.g. Map, Reduce, Prefix-Sum)

1.4.1.2 Survey of primitives

Based on our survey, we identify various granularities of primitives, which we show
in Fig. 1.9: atomic, composed, algorithms, and finally the database operators.

Atomic primitives, such as map, reduce, and prefix sum, consist of a single
processing loop with internal functional statements that cannot be split further. A
composed primitive uses one or more atomic primitive or extends a primitive with
custom implementations. Hash-build or hash-probe are examples of a composed
primitive. A hash build, for example, can be built with a map primitive for
the hash function to compute the target location and custom hashing technique
implementation (like linear probing, cuckoo hashing) for placing the input in the
hash table. Finally, these atomic and composed primitives can be used to run a
complete database operator. A detailed list of these primitives is given in [19].

On the example of Q6, we can use the abovementioned primitives to define its
query execution plan as given in Fig. 1.10. This plan is flexible w.r.t. execution,
such that the selection primitives can be executed on the CPU with the materialize
primitive executed on the GPU. This allows for tandem execution across different
co-processors.

In summary, due to the divide-and-conquer implementation style of primitives,
these granular primitives minimize the implementation efforts as well as allow for
exploring optimization opportunities. Using these definitions, we can freely plug in
any device-specific implementation of a primitive without reworking the database
operators. In upcoming sections, we show the ways to realize implementation of
these primitives.

1.4.2 Grouped Aggregation as Device-Specific Primitive

1.4.2.1 Motivation

Though primitives allow re-usability of functionalities, we still need expertise about
the underlying co-processor architecture to realize an optimal primitive implemen-
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Fig. 1.10 A primitive-based
query execution plan for
TPC-H Query 6
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tation. Depending on the capability of the device, a particular implementation and
its relevant parameter set might lead to optimal performance [38]. In this section,
we take one such case of optimizing a device-specific primitive for processing a
group-by aggregation using GPUs.

Group-by is most commonly implemented using hashing techniques, which
group the input into buckets including an on-the-fly aggregation. The hashing
techniques, however, incur a lot of random memory access due to the nature of
the hash function when grouping the values. Though such random accesses have
minimal effects on CPUs and can be handled by the cache hierarchy [36], they will
have severe effects for GPUs. Hence, we explore the alternative of using a sorting-
based technique for group-by aggregation in GPUs.

Sorting has been a ubiquitous operation in query execution. Once sorted,
the groups in the input are already arranged in a continuous sequence. In such
sequences, resultant aggregation is computed in a single pass. However, such a
sequential pass over an array of data needs to be efficiently partitioned among
threads in a GPU, with all threads aggregating their respective value.

1.4.2.2 Method

To aggregate values from concurrent threads, various software-based synchroniza-
tion mechanisms are used. Modern GPUs (like NVIDIA GTX 1050) offer direct
hardware support via atomic instructions to simplify such synchronization. These
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instructions serialize aggregation on a particular target, ensuring the correctness
of results. Still, using atomics reduces execution performance as it increases the
concurrency of the threads (see [22] for related experiments). Hence, we must
implement an atomics-based aggregation technique that uses minimal atomics to
get better performance. To this end, we propose two main techniques: (1) private
aggregate variable and (2) private aggregate array.

1.4.2.3 Minimizing Atomics Using Private Space

Since the input is sorted, we can exploit their sequence to reduce the overall atomics
instructions executed. We achieve this by chunking the input such that all values of
a single group are assigned to a single thread. In case multiple groups are present in
a chunk, atomics are issued to store their partial aggregates. We store these partial
aggregates using thread-private variables or arrays so that aggregated via an atomic
instruction only when necessary. Both versions are shown in Fig. 1.11, where two
threads aggregate their own chunk of three values.

The execution flow of both variants is roughly the same. In both, a thread
sequentially reads its chunk of the prefix-sum and aggregates the corresponding
input values within its private space until it encounters a group boundary. However,
the variants differ in handling their partial aggregates and thus in the number of
required atomics.

1.4.2.4 Evaluation

We compare the performance of the best-performing chunk and thread-size com-
bination of the two private aggregate variants with the naive atomic variants with
an optimal thread size on the two consumer GPUs GTX 1050Ti and RTX 2080Ti
(see [21] for the choice of best-performing variants). The results are shown in
Fig. 1.12.

(a)

0 0 1 1 2

2 2 1 1

3

1 1

Result

Thread-private 
Variable

Prefix
Sum

(b)

0 0 1 1 2

2 2 1 1

3

2 1 0 1 1 1

Result

Thread -private 
Array

Prefix
Sum

Fig. 1.11 Using private address space in GPU for storing partial aggregates. (a) Private aggregate
variable. (b) Private aggregate array
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Fig. 1.12 Performance profile for hardware-aware aggregation variants. (a) GTX 1050Ti. (b) RTX
2080Ti

The variants in Fig. 1.12 are named as Naive representing the simple atomic
aggregation without the variants, global/local represent the target memory, and
variable/array represent the data structure for intermediate storage.

Our results indicate that the global array and local variable have higher through-
put than the naive atomic variants for almost all numbers of groups (i.e., except a
larger number of groups). This limitation of our variants is expected, as a larger
number of groups leads to multiple groups within a chunk. In this case, a thread has
to repeatedly insert the final result into global memory, degrading its performance.
We also see only a small improvement in using local memory for our variants on the
GTX 1050Ti, which in contrast is a considerable improvement on the RTX 2080Ti.
Finally, for very high amounts of groups, the overhead of internal synchronization
for the private aggregate variants does not pay off. Hence, naive local atomics
performs best in this case.

1.4.2.5 Conclusion

Our variants reach a speedup of 6x–12x to the naive atomics and 1.5–2.6x to the
naive local memory atomics. For GTX 1050Ti, the variant using a private array in
global memory is optimal with a speedup of 6x the naive atomics and 1.6x the
naive local memory atomics. For RTX 2080Ti, the variant using a local variable is
clearly superior with a speedup of about 12x the naive atomics and up to 2x the local
memory atomics.

1.4.3 Primitive Libraries

A handwritten primitive can be optimized based on the underlying device for
best performance. However, as shown in the previous section, we need extensive
evaluation as well as expertise of the underlying device to come up with such an
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implementation. Alternatively, we can also use pre-written libraries from device
experts that circumvent such extensive implementation and evaluation setups.

1.4.3.1 Motivation and Method

These device-specific libraries are general-purpose and support multiple generations
of a co-processor out of the box. Additionally, these libraries add wrappers to
device-specific implementations that hide the internal details from the end user.
Thus, the user does not need to be an expert on the underlying device. In
this context, we are looking into the support of such GPU-based libraries for
database workloads. Based on our findings, we identify three libraries (ArrayFire,
boost.compute, Thrust) that have partial support for database operations. These
libraries and their implementation options for different database operators are given
in Table 1.2. Overall, the most common database operators and primitives are
supported by different libraries. However, especially joins are not yet supported.
More information about the library support in GPUs and their extensive evaluation
with TPC-H queries can be found in [43].

1.4.3.2 Evaluation

Using the three libraries, we can now execute TPC-H Q6 as per the query plan
in Fig. 1.10. The performance of Q6 with TPC-H scale factor (SF) 1 using these
libraries is plotted in Fig. 1.13. Our microbenchmark shows a poor performance
from ArrayFire compared to boost.compute and Thrust [43]. Hence, we consider
these for a complete query execution. Furthermore, due to its small runtime, the
arithmetic step is not visible in the execution of Q6. Our results show that selection
takes a considerable time compared to aggregation in the overall query execution.
Even with the fast-performing library for the individual operators, we only get poor
performance from using libraries. Additionally, we see a performance jump from
using A100, but even in this case, the relative performance of selection is higher than
aggregation. Overall, the results show that the libraries are not tuned for database
workload and must be code-optimized for better execution.

1.4.3.3 Conclusion

Though these libraries support easy integration of alternative primitive implementa-
tions, they still lack complete support for databases. We summarize our findings for
the library support for database operations in three dimensions:

• Usefulness: The usefulness of libraries for DBMS is fairly restrictive. Not all
database operations are supported out-of-the-box through these libraries.
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Fig. 1.13 Performance of TPC-H Q6 using GPU libraries

• Usability: Not all library functions are performance efficient. For optimal
performance, a developer must test different libraries and combine their operators
based on the query.

• Portability: Libraries can be executed across various devices out-of-the-box with
fewer rework.

1.4.4 Primitive Fusion

1.4.4.1 Motivation

When executing tasks in a primitive-based system, common combinations of primi-
tives might occur. These are of special interest for optimization, since planning with
and scheduling and execution of a multitude of primitives allows dispatch overheads
to accumulate drastically. Using code fusion to automatically implement Composed
Primitives allows the system to take advantage of this potential and to better adapt to
evolving circumstances without requiring humans in the loop. In addition to directly
reducing the system overhead during execution, fused primitives offer also more
optimization potential to the underlying (compiler or synthesis) tool chain. Finally,
if the system has available Composed Primitives for commonly occurring subgraphs
of query graphs, higher-level optimization and planning functions are simplified, as
query graphs are reduced in size.

The per-primitive optimization potential is especially interesting for FPGAs,
since during implementation of a circuit, the tool chain has access to every element,
which allows for much more thorough optimizations across component boundaries
than for software [4]. Also, each primitive must contain the logic required to
interface with the rest of the accelerator system.
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1.4.4.2 Method

For successful adoption of primitive fusion into a primitive-based system, two
abstract problems need to be solved: First, from a set of query plans, common
subgraphs need to be identified. Second, during runtime, incoming queries need
to be analyzed and instances of Composed Primitives need to be identified. As
both of these problems are NP-hard, we propose a non-optimal but best-effort
approach [12].

For the first problem, we propose a constructive greedy approach guided by a
heuristic. Iteratively, the pair of primitives that is estimated to be most commonly
replaced by the resulting Composed Primitive in the input set of queries by the
heuristic is selected for fusion. The set of query graphs induced by this replacement
is then taken as input for the next iteration. The advantage of this approach over
taking the most commonly occurring combination is that due to the often treelike
interconnections in the input graphs, not all instances can be replaced.

For the matching process at runtime, we propose another greedy approach,
namely, iteratively matching the largest possible Composed Primitive in the topo-
logically sorted query graph. This process should be fuzzy, since it can make sense
to replace a subgraph of a query with a Composed Primitive doing additional work
if the estimated runtime is lower.

1.4.4.3 Results

Evaluating the proposed algorithms for a set of TPC-H query graphs and a library of
streaming primitives for FPGA resulted on average in a reduction of 47% in terms
of FPGA resource use without any change in throughput [12]. TPC-H Query 6,
for example, is reduced to only three Composed Primitives and one filter primitive
implementing materialization. Due to the reductions in resource use, additional
computations could be mapped to the FPGA. In the set of queries considered, the
proposed heuristic chose the optimal candidates in 86% of the 21 iterations, more
than three times more accurate than the naive approach [12].

1.5 FPGA Overlay Template

In this section, we describe the FPGA component of the ADAMANT system.
After discussing the advantages and challenges of integrating FPGAs into a
heterogeneous, runtime-adaptive data processing system, we present an overview
of our research into flexible and scalable FPGA accelerators in the form of our
template for creating reconfigurable FPGA overlay architectures.
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1.5.1 Motivation

The standard approach to creating FPGA designs is to use a hardware description
language (HDL) and describe the design at the register transfer level (RTL).
While this level of abstraction is sufficient for defining data paths and associated
control logic, it is not suitable for creating complex system designs. High-level
synthesis (HLS) has emerged as an alternative to HDL designs, raising the level
of abstraction to a more software-like approach. HLS is the technique of writing
hardware designs (kernels) in software languages such as C++ or OpenCL and
automatically generating the RTL design that implements those kernel functions.
Yet, there is the disadvantage that HLS creates RTL sources that still need to
pass through the entire FPGA tool flow before they can be run, which can require
hours. Other approaches to increasing the level of abstraction for FPGA designs and
speeding implementation can be summarized under the term overlay architectures,
which describes the process of bundling the raw FPGA resources into higher-
level components that themselves provide some sort of programming interface.
These systems are usually not fully programmable and feature specialized compute
units tailored explicitly to the application domain. Coarse-grained reconfigurable
architectures (CGRAs) are a more generalized and more structured class of accel-
erators that can be implemented on FPGAs. Instead of on the level of single-bit
resources, reconfiguration happens at a higher level: The accelerator contains word-
sized interconnects and implements common arithmetic and logic operations on
that level as well. The compute units are usually structured in a 2D-tiled grid
with local connections between neighboring cells because that maps well onto
existing (FPGA) technology. This allows programmers without FPGA knowledge
to assemble deep pipelines at runtime, but existing designs are usually both closely
coupled to a specific FPGA in order to fully exploit its resources and are tailored
to the needs of a specific application. An extension of this concept is possible with
dynamic partial reconfiguration (DPR), which allows exchanging parts of the FPGA
at runtime. This can be used to increase flexibility and area efficiency by not having
to ship every required function in one FPGA bit stream, but DPR also incurs some
overhead over static designs.

Before introducing the FPGA approach taken for the ADAMANT architecture,
the next paragraphs present some key findings from related work about acceler-
ating database query processing with FPGAs. According to a 2020 survey, the
programmability gap and difficulties in achieving desired performance levels have
impeded widespread adoption of FPGAs in this domain [16].

Lu and Fang [29] present research on running TPC-H queries on a system with
a CPU and two FPGAs running static database accelerators with limited configura-
bility. Without the specialized query plan optimization passes they propose, half of
all TPC-H queries either cannot make use of any acceleration or run slower than on
CPU.

The runtime-reconfigurable accelerator for analytical query processing proposed
by Ziener et al. [47] consists of four separate areas for loading pipelines of operators
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via DPR combined with static, non-reconfigurable compute units for sot and join.
Each area has the form of 16 small adjacent reconfigurable partitions, through which
data moves strictly sequentially. Reorder units are used to adapt row-oriented data
to compute units.

Schmid et al. [41] proposed a tool for automatically building FPGA images
for accelerating database query processing. The tool uses a standardized interface
to integrate several HLS kernels into one bit stream. Kernels can exchange data
through a single global streaming interconnect, and the tool connects a memory-
mapped bus to all kernels for setting configuration parameters at runtime. Both
approaches are limited in terms of scalability.

1.5.2 Investigation of OpenCL-Based HLS

Ideally, a primitive-based DBMS for heterogeneous hardware could be extended
to FPGAs by synthesizing available portable kernels from a common pool with a
HLS tool and creating an FPGA image capable of executing them. While this is
possible using OpenCL with some limitations, such as non-standard behaviour of
some platforms, this approach has some serious drawbacks [14].

We show that the lack of flexible on-chip data flow routing in existing HLS
tool flows essentially negates the main benefit of FPGAs. Figure 1.14 shows
four OpenCL kernels integrated into one FPGA bit stream. Two communication
techniques supported by the HLS tool are shown: The red arrows show how kernels
can exchange data through buffers in memory, while the blue arrow shows two
kernels passing data between them on-chip through a FIFO, or pipe.

A sequence of operations involving kernels zero and one requires intermediate
data to be stored into DRAM and for kernel one to wait until kernel zero is finished.
Processing data with kernels two and three requires no storage for intermediate
data and no coordination from software, since the transfer between the kernels
happens on the fly through hardware handshaking signals and entirely within the
FPGA. Performance of the first example can be improved by executing the kernels
on chunks of the whole dataset, but even with chunked execution, the first option

Host Memory

Accelerator Card

Device Memory (Buffers)

FPGA

Input Output

Kernel2 Kernel3Kernel1Kernel0 FIFO (Pipe)

Fig. 1.14 Communication between OpenCL kernels implemented on FPGAs (Reprinted with
permission from [14])
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Fig. 1.15 Stacked bar plot of execution time for TPC-H Query 6 for Buffer- and Pipe-based kernel
communication, as well as single-kernel/fused primitives. Reprinted with permission from [14]

consumes double the necessary memory bandwidth. For deeper pipelines, such as
encountered with primitive-based systems, this penalty worsens drastically. The
second example also is unsuitable for such a system, as Pipes between kernels have
to be exactly one to one and known at design time.

Figure 1.15 shows the execution time of TPC-H Query 6 for the different
communication techniques on an OpenCL-based FPGA accelerator On the left-hand
side, independent kernels are exchanging data through the DRAM on the FPGA
accelerator card. The right-hand bar shows the execution time for a set of kernels
assembled into a hardware pipeline through on-chip FIFO buffers. For comparison,
the bar in the middle shows the performance of a custom kernel implementing Query
6.

These results show that with an operator-at-a-time execution model, it is
impossible to build deep pipelines that take advantage of the inherent spatial
parallelism and essentially infinite internal bandwidth of FPGAs. The low clock
rates and simpler memory controllers compared to CPU and GPU will in that case
limit performance severely. We also show that intermediate data exchange through
DRAM also requires the most FPGA resources [14].

1.5.3 FPGA Overlay Template

Existing research and the findings from the first system lead to the conclusion
that an FPGA-based accelerator for the ADAMANT systems requires a proper
reconfigurable overlay architecture in order to efficiently provide the infrastructure
desired for executing queries at runtime. Query execution plans are represented
as data flow graphs, where nodes are functions that are implemented in compute
units, which are then loaded into reconfigurable partitions in the FPGA. The edges,
which represent data dependencies, are mapped to on-chip paths between compute
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units. Our approach thus targets streaming applications in general, of which the
aforementioned query execution plans are a subset. After uncovering hardware
limitations present in some FPGA devices that impede the implementation of an
overlay with high performance and a flexible, user-centric compute unit interface at
the same time [10, 13], the need to broaden the scope beyond an ADAMANT FPGA
accelerator system became apparent.

In order to provide portability and scalability, we designed a parametrizable
template that is used to instantiate domain-specific overlay architecture instances
at specified performance levels and resource footprints [11]. The template consists
of a 2D grid of tiles with local streaming connections between neighbors. Each
tile contains a reconfigurable partition, into which compute units are loaded at
runtime via DPR. In addition to the local streaming links, the template provides
a novel lightweight on-chip network, which is used for small data transfers such as
scalar arguments or results instead of reserving dedicated data flow connections.
The template builds on existing standards in order to support a wide range of
implementation techniques for compute units and defines consistent interfaces
between components.

Figure 1.16 shows a high-level block diagram of the overlay architecture
template. The area shaded in dark gray is the 2D-grid of tiles, each of which contains
a configurable partition for a compute unit. Through local streaming links between
neighboring tiles, compute units can exchange data. The area shaded in light gray
shows the infrastructure that enables memory access through DMA blocks. From
the edge of the tile, grid data is fed into pipelines assembled using multiple compute
units/tiles, and from the edges, output data is stored back into arrays in memory.
The light-weight on-chip network is shown with dashed arrows. It connects every
programmable component of the overlay template to the host software via the
PCIe block (top left) more efficiently and with higher throughput than a memory-
mapped bus system. The PCIe block is also used for transferring data between host
and device memory. At deployment time, the topology and bit width of the local
streaming connections can be configured, trading off base resource use with SIMD
capabilities and in order to adapt to different expected shapes and densities of data
flow graphs.

Figure 1.17 shows a high-level architecture of a single tile. The reconfigurable
partition, into which compute units can be loaded at runtime, is surrounded by
data flow routing resources, supporting logic and a router for the on-chip network.
The data flow routing resources are placed in the tile instead of integrating them
into compute units in order to generalize and simplify the latter. The streaming
connections between tile and compute unit contain FIFO buffers in order to improve
performance. Since data streaming can only deal with known, fixed-access patterns,
the template provides a configuration flag to instantiate some tiles with full bus
master ports for random memory access to the device memory. This option is
especially costly in terms of resources and therefore, some consideration into the
required number of memory access-enables tiles is necessary.

In order to deploy any reconfigurable overlay architecture, a floor plan of the
reconfigurable partitions is required. For traditional overlays, a significant amount
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Fig. 1.16 Block diagram of
the FPGA overlay
architecture template
(Reprinted with permission
from [11])
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of thought and design space exploration is invested in order to come up with a
suitable layout. The template character of our work aims to address this step in the
design process as well with a user-guided floor planning tool based on open source
device information [11].

1.5.4 Results

For the ADAMANT system for analytical database query processing, a 4 × 10
FPGA overlay with 11 DMA engines is instantiated from the template on an AMD
U280 data center FPGA accelerator card [11]. Based on expected performance and
resource impact of the primitives from the ADAMANT library, a configuration with
four-way SIMD-style data parallel processing of 32 bit words was selected.

Thus, the system was configured with 128 bit streaming links and connections
to neighboring tiles in a 4-neighborhood. The tiles were set up for compute units
with up to two output streams. Resource estimations lead to a partition size of
1440 LUTs/2880 FFs for streaming compute units and double that amount for a
subset of four tiles for compute units with the optional memory bus connection. The
system runs at 250 MHz, and the external memory bandwidth is sufficient for 9
DMA operations in parallel.
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Fig. 1.18 Mapping of
TPC-H Q6 to the 10×4
ADAMANT overlay
instance [7, 11]. Shaded
tiles/DMAs are occupied.
Data columns are written in
cursive. Reprinted with
permission from [11]
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The compute units based on database primitives require between 175 and 662
LUTs and 342 and 1689 FFs [11] each. In total, the system occupies 33% of the
available FPGA resources, the overlay grid accounting for approximately half of
that. In this form, the system is not just used to take performance measurements but
also serves as a basis for further experiments, since more resources are free.

Figure 1.18 shows TPC-H Query 6 mapped to the ADAMANT overlay instance.
In total, 15 tiles are occupied, 9 for compute units and 6 for data flow routing
between non-adjacent compute units. The different parts of the query execution
plan are color-coded similar to Fig. 1.10. Executing this query on the ADAMANT
overlay instance takes 11.27 ms for 10 million rows, 2.7× faster than an AMD Vega
56 GPU (30.67 ms) and reaching near-parity with an AMD Epyc 7351P 16-core
CPU (11.07 ms). While both the OpenMP primitives for the CPU and OpenCL
primitives for the GPU are optimized well already, the U280 contains enough
resources to fit an overlay large enough to execute Q6 several times in parallel,
improving performance further [11].

1.6 Cross-Device Query Execution Methods

With the introduction of an FPGA overlay and device-specific primitives, it is now
possible to execute a whole query on a single device. However, to use the maximum
available compute power, it is necessary to be able to distribute work among all co-
processors. Hence, for overcoming Challenge C2, we (1) now need to incorporate
different co-processors for executing a single query and (2), especially considering
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the FPGA, hide the delay in FPGA configuration. The former is resolved by using
our 4-phase chunked execution, and the latter is achieved by using a combined
execution of compiled and interpreted execution.

1.6.1 4-Phase Chunked Execution for Cross-Device Execution

1.6.1.1 Motivation

One of the key components for data processing using a co-processor is using an
appropriate execution model. Traditional execution models like operator-at-a-time
(or volcano executor) or compiled execution that are optimal for a CPU might not
work the same for a GPU. Execution models directly define the process and data
flow during query execution. For co-processor acceleration, an execution model
defines the amount of memory to be used in a co-processor and the execution flow
within a co-processor and between the co-processor and its host. Defining a suitable
execution model for co-processor acceleration in turn characterizes the execution
flow of our runtime engine. To overcome the limitation, we introduce an abstract
chunk-based execution model that can support any arbitrary co-processor.

1.6.1.2 Method

In order to have an optimal execution flow, we create two identical memory spaces
to alternate execution and transfer. The transfer and execution threads alternate
between these memories that access the chunks. Additionally, the intermediate
results of any pipeline breaker are also transferred back to the host using host-
addressable memory. All other intermediate results are stored in the device memory
to limit data transfers. Once the execution is complete, we deallocate these memory
locations.

An overview of these different methods of query execution is given in Fig. 1.19.
The naive chunked execution—Fig. 1.19a—has inherent delays with execution due
to transfer and execute loop, which can be improved by concurrent transfer and
execution as shown in Fig. 1.19b. Additionally, as explained above, we can reuse
memory spaces thereby reducing allocation and de-allocation overheads. In this final
variant, the execution starts by creating pinned memory spaces (stage phase) over
which the chunks are copied (copy phase). Once a chunk is copied, the compute
phase processes these data. Once all the chunks are processed, the deletion phase
deallocates the memories for the next queries.
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Fig. 1.19 Execution model alternatives for co-processor acceleration. (a) Chunked execution. (b)
4-phase pipelined execution

1.6.1.3 Evaluation

For evaluation, we test the performance of these execution models with CUDA
implementations of our primitives on GPUs. To test the scalability of our execution
models, we consider TPC-H Q6 with scale factors 100 and 140, and we compare
the performance with HeavyDB, which uses a compiled execution model. From our
results, we see a clear improvement in performance when using 4-phase model in
NVIDIA RTX 2080Ti. This is mainly due to the poor transfer time, which leads
to considerable wait time before execution. Our pipelined execution reduces this
wait time leading to an improvement in overall performance. However, we see that
A100 does not reflect the same. This is due to the faster transfers from NVlink. We
also see a considerable performance difference from HeavyDB. This shows that the
interpretation-based approach is faster than the compiled execution mainly due to
the improvement in data transfers. A more detailed evaluation of various primitives
as well as other implementations is given in [20] (Fig. 1.20).

Overall, our execution models can support any arbitrary co-processor without a
complete rework of the query execution engine.
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Fig. 1.20 Performance of the execution models and HeavyDB execution with larger-scale factors
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Though the execution models support any abstract co-processors, they require
the primitives to be pre-compiled. Many co-processors also support runtime compi-
lation, which might not be a viable option for our query engine. For such cases, we
designed an alternative hybrid query engine, Tether [23], which is described in the
next section.

1.6.2 Combining Compiled and Interpreted Execution

1.6.2.1 Motivation

In the above execution models, the co-processors execute queries without compila-
tion overhead or configuration time for the FPGA overlay. However, adding runtime
compilation or FPGA configuration incurs a considerable delay in query execution.
To hide this delay, we consider a hybrid execution model that combines interpreted
execution with compiled execution. Specifically, we hide the compilation and
configuration overhead by concurrently processing a query in the interpreted mode.
Once the query is compiled and configured, the remaining execution is completed
using the compiled query and configured device.

1.6.2.2 Method

Since the compilation and configuration can be completed at any arbitrary point
during interpreted execution, it is not feasible to identify this switchover point in
advance. Therefore we split a query into multiple pipelines and use them to switch
between the execution models. A pipeline consists of a sequence of primitives that
ends with a pipeline breaker primitive (like an aggregate primitive). An example of
our hybrid execution plan is like the one given Fig. 1.21. In this case, the pipeline P1
will be executed in the interpreted mode while others are compiled or configured.
The pipeline breaker—join—is used to switch from P1 to other pipelines to be
executed in compiled mode.

Let us consider the case of processing TPC-H Q6 with our hybrid execution
model. Unlike others, Q6 has only one pipeline that ends with an aggregate operator.
Hence, we use this operator as the switching point for the execution models.
During execution, the interpreted execution processes the query and generates
partial aggregate results (cf. Fig. 1.22). Once compiled execution takes over, the
partial aggregates are updated to get the final result.

1.6.2.3 Evaluation

To test the performance gain from this execution, we test our hybrid execution on
an Intel Xeon Gold 6130 CPU with varying scale factors.
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Fig. 1.21 A sample hybrid
query plan

R1

R2

y=3

z;count(*)

z=c

x=7

z=c

P2

P1
P3

P4

next()

next()

count(*), sum(a), max(b)P5

R3

Filter Column
Fetch

Aggregation Agg

Compiled
Aggregation Agg
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Fig. 1.23 Hybrid vs. traditional query execution of TPC-H Q6

The chart in Fig. 1.23 shows the performance benefit from our hybrid execution
for Q6. The execution is clearly faster than naive compiled execution as the
overhead of compilation is so large. In case of SF 100 until SF 150, we see that
our hybrid execution completes query execution even before the compilation can
finish. Therefore in these data ranges, our hybrid execution and vectorized execution
have nearly identical execution time. Once this threshold is crossed, we see that
our hybrid execution can slightly benefit from both the compiled and vectorized
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execution, thereby improving the performance further. Due to a single pipeline and
only one final pipeline breaker, Q6 is not the optimal case for the proposed approach.
For other TPC-H queries (e.g., Q1 and Q3), we achieve speedups of up to 3x, which
can be found in the corresponding paper [23].

1.7 Multi-query Processing

With the introduction of the ADAMANT query execution engine, device-specific
primitives, and FPGA overlay, we are now able to execute a single query. Since
usually multiple queries are executed concurrently, the final Challenge C3 is to
improve the system’s performance by exploiting the results of multiple queries at
any given instant.

1.7.1 Motivation

Our idea to counter C3 is to exploit the potential of reusing results. Current multi-
query optimizers (MQOs) devise a shared execution strategy across multiple queries
based on their commonalities, generally using any of the two strategies: batched or
cached. In this contribution, we investigate how to combine these two approaches.
Therefore, we propose a hybrid-MQO optimizer that can enhance the performance
of HW-aware query execution with processing multiple queries at a time, thereby
improving the overall query throughput of a DBMS. Our hybrid-MQO system
merges batched query results as well as caches the intermediate results, thereby
any new query is given a path within the previous plan as well as reusing the results.
A detailed description of this hybrid optimizer is given in our article [18].

1.7.2 Method

To explain the optimization flow of our hybrid optimizer, let us consider the set of
queries in Fig. 1.24. Out of these, QN and Q6 share the table lineitem as well as the
columns quantity and discount. So, our hybrid optimizer creates a common plan for

: SELECT l_quantity, AVG(l_tax)
FROM lineitem
WHERE l_quantity < 25
AND l_discount < 0.03
GROUP BY l_quantity

6: SELECT sum(l_extendedprice * l_discount)
FROM lineitem
where l_shipdate >= ’1994 01 01’
and l_shipdate < ’1995 01 01’
and l_discount between 0.05 and 0.07
and l_quantity < 24

Fig. 1.24 Exemplary queries to be optimized in the MQO approach
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these queries forming a common filter clause to fetch the desired rows. Afterward,
the execution is split for the group-by aggregation and simple aggregation for QN

and Q6, respectively. In addition to this batched query plan, we also store the
intermediate results to be reused with future queries.

Since storing intermediate results incurs considerable memory space, we only
cache the results for a window of queries. In case the cache is full, we use traditional
caching techniques to evict some of the existing results. Such execution of a
common query plan as well as reusing pre-computed results drastically improves
query execution.

1.7.3 Evaluation

We measure the overall gain of executing aggregate queries using our hybrid
approach. We use a Google Cloud—E2-Highmem—instance (with Intel Skylake)
with 32GB of memory for our evaluation. The results are given in Fig. 1.25. Here,
we compare the performance of randomly generated aggregate query execution
(i.e., different modifications of Q6) using our hybrid execution in comparison with
a simple sequential execution, using Materialized View Reuse (MVR), and using
the Shared Sub-Expression (SSE) optimization technique. As the results show, the
hybrid technique can achieve around 1.5x times faster query execution than other
techniques, but in some cases, we also see a considerable slowdown. The slowdown
is mainly due to the additional caching and query batching being done before
execution. The speedup is from the time saved from reusing the processed results.
The extensive description of these results and the impact of caching are discussed
in [18].

1.7.4 Conclusion

With this contribution, we studied the exploitation of synergies across queries
(which is the core for developing a shared execution plan). Apart from these limited
experiments using a simple query like Q6, we contributed extensive experiments
in [18]. For instance, we studied the impact of the derivability factor, represent-
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ing the similarity of the results within a query batch, and varying the cache sizes to
study the influence of caching. Moreover, we also study the role of different database
operators in the performance of our hybrid system. The results of our MQO suggest
that, depending on the individual operators, our hybrid method gains a speedup of up
to 4x from using MQO techniques in isolation. Furthermore, our results show that
workloads with a generously sized cache that contain similar queries benefit from
using our hybrid method, with an observed speedup of 2x over sequential execution
in the best case.

1.8 Conclusion

In this chapter, we presented ADAMANT’s core concepts that enable the integration
of heterogeneous co-processors into a common query-processing engine. These core
concepts range across the whole execution workflow of database systems and solve
the main challenges when incorporating heterogeneous co-processors in a database
system on the single-device level (C1), the multi-device level (C2), and the multi-
device multi-query level (C3). We solved these challenges as follows.

In order to integrate heterogeneous co-processors and exploit their capabilities
(C1), we classified existing device-specific primitives and exemplarily tuned the
sorted grouped aggregation primitive for GPUs and applied primitive fusion.
Furthermore, to integrate the FPGA into the processing, we proposed an overlay
for flexible query processing.

With the possibility of using best-performing co-processor implementations,
we moved toward concepts to incorporate multiple (co-)processors into the query
execution (C2). These concepts solve the problem of different compilation and
configuration times (e.g., for the FPGA overlay) by hiding them using interpreted
execution. Furthermore, to enable a chunked execution for larger-than-memory
workloads, ADAMANT offers a flexible device-specific execution model.

On the level of processing multiple queries simultaneously (C3), we devised
concepts for two alternative execution strategies: exact multi-query processing and
approximate query processing, which can run simultaneously in ADAMANT. While
the former uses batched processing and materialized views to lower execution
costs per query, the latter lowers the accuracy for exploratory queries to effectively
improve query runtimes and system load.

In summary, the proposed concepts of ADAMANT push database systems
research toward exploiting the whole capabilities of the diverse landscape of
processing platforms. They enable a system that can dispatch processing tasks
flexibly to heterogeneous processing devices depending on load factor, data locality,
and estimated performance.

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
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Chapter 2
Query Processing on Heterogeneous
Hardware
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Viktor Rosenfeld , Jonas Traub , Steffen Zeuch , and Volker Markl

Abstract In modern processor design, power efficiency has become the primary
constraint, prompting manufacturers to develop processors that balance energy
consumption with the growing demand for speed. This shift has initiated an
era of heterogeneous multi-core computing, characterized by machines utilizing
various processors such as GPUs, MICs, and FPGAs. These processors significantly
enhance performance due to their computational capabilities and memory band-
width, essential for optimizing query processing performance. However, executing
database queries efficiently across diverse processors presents challenges due to
architectural differences, leading to varied performance outcomes for different oper-
ator implementations. This chapter explores methodologies for executing database
queries on any processor with maximum efficiency without manual adjustments. We
propose compiling database queries into optimized code that can adapt continuously
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to achieve optimal performance across a wide array of processors. Key areas of
focus include the use of GPUs in database systems, addressing challenges such as
workload distribution and data transfer bottlenecks, and introducing a classification
scheme for strategies developed to tackle these issues. Additionally, we examine
NVLink 2.0 technology’s potential to improve data transfer efficiency between
GPUs and CPUs, enhancing GPU-accelerated query processing. Furthermore,
we present a novel adaptive query compilation-based stream processing engine
(SPE) that surpasses traditional interpretation-based SPEs by incorporating runtime
optimizations and task-based parallelization. This approach allows for dynamic
adjustments to data characteristics, significantly improving query execution effi-
ciency and throughput. Through these explorations, we aim to provide insights into
current systems and highlight areas for future research, ultimately contributing to
the advancement of heterogeneous query processing systems.

2.1 Introduction

In the realm of modern processor design, the primary constraint is power efficiency.
This limitation compels manufacturers to tailor their processors, ensuring they
remain within energy budgets while meeting the increasing demands for speed
from applications. This trend has led to the emergence of machines equipped
with a variety of heterogeneous processors such as GPUs, MICs, or FPGAs.
These processors offer significant performance enhancements due to their additional
computational capabilities and memory bandwidth. They represent a crucial strategy
for boosting query processing performance as the era of homogeneous multi-core
computing draws to a close [1–3].

The advent of the heterogeneous multi-core era necessitates efficient execution
of database queries across various processors. Although parallel programming APIs
like OpenCL facilitate the operation of single operators across a broad spectrum of
processors, they fall short of ensuring consistent performance across different archi-
tectures. This discrepancy arises from the architectural variances among processors,
which lead to divergent performances for different operator implementations. For
instance, CPUs favor sequential memory access patterns, whereas GPUs benefit
from coalesced memory access. Achieving optimal performance typically requires
processor-specific data structures and code optimizations.

Past approaches have either concentrated on generating highly efficient code
tailored to a single processor [4, 5] or on enabling database operators to function
across multiple processors using a unified codebase [6, 7]. Code generation strate-
gies often face challenges such as lengthy compilation times or limitations to a
single processor type due to the generation of low-level machine code (e.g., LLVM,
CUDA, OpenCL, or HSA). On the other hand, hardware-agnostic methods struggle
with achieving performance portability [8].

This chapter, a part of the SPP project’s broader initiative, aims to explore
methodologies for executing database queries on any processor at maximum
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efficiency without manual adjustments. To this end, we propose the concept of
compiling database queries into efficient code capable of running across a wide
array of processors. By fine-tuning the generated code, the database system can con-
tinuously adapt until it achieves optimal performance on the specified processors.
The efforts documented here specifically aim to shed light on several key areas,
demonstrating the SPP project’s commitment to overcoming the contemporary
challenges of heterogeneous computing environments and setting new standards for
query processing performance. Specifically, the chapter aims to shed light on several
key areas:

• Overview of the significant interest in leveraging GPUs within the database
systems research community, attributed to their high computational power and
memory bandwidth. We discuss the intricacies of creating heterogeneous query
processing systems that utilize both CPUs and GPUs, outlining the challenges of
workload distribution, data transfer bottlenecks, and multi-processor support, and
introduce a classification scheme to organize the strategies developed to tackle
these issues, offering insights into current systems and highlighting areas for
future research (Sect. 2.3).

• Exploration of the potential of GPUs as accelerators for database query process-
ing, highlighting their limitations due to small onboard memory and inadequate
CPU interconnect bandwidth, which lead to scalability issues for large datasets.
We explore how NVLink 2.0, a new interconnect technology, can alleviate these
bottlenecks by enabling efficient data transfer between GPUs and CPUs, thereby
enhancing the processing of large datasets on GPUs. Through an analysis of
NVLink 2.0, we demonstrate significant performance improvements in a no-
partitioning hash join operation, achieving speedups over traditional connections
and optimized CPU implementations, suggesting that fast GPU interconnects
could revolutionize GPU-accelerated query processing (Sect. 2.4).

• Development of a novel adaptive query compilation-based stream process-
ing engine (SPE) that overcomes the limitations of traditional interpretation-
based SPEs, which do not utilize runtime optimizations and therefore cannot
fully leverage modern hardware or accommodate changing data characteristics.
By incorporating query compilation and task-based parallelization specifically
designed for stream processing, alongside adaptive compilation techniques for
runtime re-optimizations, we allow for dynamic adjustments to fluctuating data
characteristics, significantly enhancing query execution efficiency and markedly
improving throughput compared to current state-of-the-art SPEs (Sect. 2.5).

2.2 Background

We now discuss the state of the art of query optimizations on modern processors in
a database context. We focus on query compilation, related work from the compiler
community on translating programs to processors with different architectures, and
query processing on heterogeneous processors.
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2.2.1 Query Compilation

The concept of query compilation traces its roots back to the pioneering System
R project [9], gaining initial attention in the field of database management systems.
Throughout the 1980s [10] and with the rise of main memory databases, the focus on
query compilation intensified, driven by the need to minimize main memory traffic
and CPU instruction execution. The advent of just-in-time compilation capabilities,
exemplified by Rao et al.’s work [11], allowed for the generation of query-specific
code, marking a significant advancement in the field. The approach of template-
based code generation for compiling queries into C code, as explored by Krikellas
et al., further contributed to this evolution, leading to efficient machine code
production via C compilers [12].

Neumann’s introduction of the produce-consume model revolutionized the way
code could be generated for data-centric query processing, emphasizing the fusion
of operators in an operator pipeline for streamlined execution [4]. This model also
highlighted the efficiency of generating LLVM IR code over C code to reduce com-
pilation times significantly. Further developments, such as the morsel framework
proposed by Leis et al., introduced NUMA-aware parallelization techniques for
compiled operator pipelines, enhancing performance and scalability [13].

Comparative studies, like those conducted by Sompolski et al., critically evalu-
ated the merits of compiled execution against interpreted vector-at-a-time process-
ing, suggesting a hybrid approach that incorporates blockwise query processing
for optimal performance [14]. This period also saw the manual compilation
of TPC-H queries by Dees and Sanders, revealing the substantial performance
potential of query compilation [15]. The exploration of query compilation in
various contexts, including language-integrated queries and high-level language
database systems, underscored the versatility and potential of this approach [16].
Notably, the DBToaster platform emerged as a pioneering solution for compiling
view maintenance queries into efficient machine code, demonstrating the practical
applicability and benefits of query compilation in commercial products like Hekaton
and Impala [17–19].

Innovative compiler frameworks, such as Kernel Weaver proposed by Wu et
al. [5], have shown the ability to automatically fuse relational operator kernels
with those from other domains, broadening the applicability of query compilation.
Similarly, the compute/accumulate model introduced by Rauhe et al. for GPU
code compilation represents a notable advancement, structuring query operations
into distinct phases for enhanced efficiency [20]. The trend toward high-level
language utilization for database system development, illustrated by projects like
LegoBase and DBLAB, emphasizes the move toward generative programming
and domain-specific languages for generating low-level code, showcasing the
continuous evolution and refinement of query compilation techniques [21, 22].
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2.2.2 Compilers

The development of frameworks like Delight by Brown et al. has facilitated
the creation, compilation, and execution of domain-specific languages (DSLs),
promoting ease of programmability at high abstraction levels while ensuring high
performance through generic and DSL-specific compiler optimizations [23]. Dan-
delion, a versatile compiler that leverages .NET LINQ for compiling data-parallel
programs to various heterogeneous processors, exemplifies the advancements in
compiler technology, enabling efficient data processing across different computing
environments, including CPUs, GPUs, and FPGAs [24].

2.2.3 Databases on Heterogeneous Hardware

The exploration of database operations on heterogeneous hardware has led to signif-
icant research into optimizing relational operators for multi-core CPUs and GPUs,
as demonstrated by studies on efficient hash and sort-merge joins [25–27]. The
development of GPU-accelerated database engines, such as GPUQP, and investi-
gations into the performance of hash joins on coupled CPU/GPU architectures have
highlighted the potential of heterogeneous processing environments for enhancing
query execution efficiency [28]. Projects like OmniDB and the approximate and
refine technique propose innovative approaches to database engine design and query
processing, emphasizing the importance of hardware obliviousness and lossy data
compression techniques for efficient co-processing [7].

This growing body of research underscores the diverse strategies employed to
harness the capabilities of heterogeneous hardware for database query processing,
reflecting a broader trend toward leveraging specialized processors for improved
performance and efficiency in data management systems.

2.3 Query Processing on Heterogeneous CPU/GPU Systems

Due to the high computational power and internal memory bandwidth, graphic
processing units (GPUs) have been extensively studied by the database systems
research community. A heterogeneous query processing system that employs CPUs
and GPUs simultaneously faces several challenges, including how to effectively dis-
tribute the workload on processors with different capabilities, how to overcome the
data transfer bottleneck, and how to support efficient implementations for multiple
processors. In this section, we introduce a classification scheme, a first contribution
to the SPP project, designed to categorize techniques developed to address these
challenges. This scheme helps in structuring existing approaches and guides the
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development of new strategies, thereby facilitating the broader project’s goals of
enhancing computational efficiency and scalability in heterogeneous systems.

2.3.1 Processor Architectures

In this section, we describe the architectures of CPUs and GPUs as well as
different strategies for integrating GPUs in a heterogeneous system. We also briefly
introduce the traditional GPU programming model and describe differences to CPU
programming. GPUs are typically characterized by high computational power and
memory bandwidth, especially compared to CPUs. These performance advantages
of GPUs over CPUs are often cited as a major motivation to use GPUs for query
processing in database research [29–35].

Yet it is too simplistic to reduce GPUs to these performance advantages. In fact,
when we focus on other metrics, CPUs outperform GPUs. Instead, the different
performance characteristics of CPUs and GPUs indicate that they are optimized
for different usage scenarios. Both processor types are constrained by the power
wall, i.e., the requirement to keep their power consumption, and the resulting heat
dissipation, inside a manageable level [36]. To achieve high performance under
these constraints, the architectures of CPUs and GPUs are based on different
design trade-offs, which are driven by concrete application requirements. This
specialization implies that the choice of the best processor depends on the type of the
problem. In the following, we describe the design considerations that motivate the
architecture of CPUs and GPUs in more detail. In Table 2.1, we contrast a number
of processor properties of the EPYC 7702P and the Ampere A100 for reference.

Table 2.1 Comparison of processor properties of the AMD EPYC 7702P and the NVIDIA
Ampere A100

EPYC 7702P Ampere A100

Release year 2019 2020

Transistors 38.7 billion 54.2 billion

Thermal design power 200 W 400 W

Independent cores/SMs 64 cores 108 SMs

Concurrent threads 2/core 128/SM

Maximum frequency 3.35 GHz 1.41GHz

Register file size 6.4 KiB/core 256 KiB/SM

L1 data cache 32 KiB/core 192 KiB/SM

L2 cache 512 KiB/core –

Last-level cache 16x 16 MiB 40 MiB

Memory interface 8x 64-bit DDR4-3200 10x 512 bit HBM2

Memory clock 1.6 GHz 1.215GHz
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2.3.2 Conventional CPUs

The primary optimization goal of conventional CPUs is their serial performance
[36]. Historically, manufacturers relied on Dennard scaling [4] to increase processor
frequency and thus processing speed. Dennard scaling relates the size of transistors
with their operating frequency and voltage. As transistors shrink, more of them
can be integrated on a die, and their operating frequency increases. To keep power
consumption constant, the operating voltage has to be reduced. This effect alone has
led to a 100× performance increase of recent CPUs compared to early CPUs [36].

Processor vendors have also implemented microarchitecture advances that
extract implicit instruction level parallelism (ILP) from the instruction stream, to
improve serial performance. The core technique of these advances is the processor
pipeline that overlaps the execution stages of different instructions. Ideally, the
pipeline is always full, and the processor can issue and complete one instruction
per cycle per functional unit. However, the pipeline stalls when instructions are
dependent on each other or when the processor has to wait on memory access.

Modern CPUs implement a number of techniques to keep the pipeline from
stalling and increase ILP [37]. For example, branch prediction continues to fetch
and decode instructions of the predicted branch in the instruction stream, which
keeps the early stages of the pipeline full. Speculative execution also executes the
instructions of predicted branches and only discards their results if the prediction
later proves to be incorrect. Out-of-order execution reorders the instruction stream to
reduce the impact of dependent instructions and memory stalls. Together with Den-
nard scaling, these microarchitecture advances have increased scalar performance
significantly over the years.

The exploitation of ILP is limited by the performance of the memory system.
Data references stall the processor pipeline if the processor cannot find independent
instructions to execute. The length of the stall depends on the memory latency
and the number of concurrent memory accesses that can be satisfied by the
available memory bandwidth. Unfortunately, the rate of improvement of memory
performance has lagged processor performance over time, both for latency and
bandwidth. Whereas early CPUs could access memory in a single clock cycle, they
now have to wait hundreds of cycles. In typical programs, especially in those that
depend on integer performance, there is not enough instruction-level parallelism
available to overcome this access latency. To reduce memory access latency, modern
CPUs feature large caches, which allow CPUs to exploit temporal and spatial
data access locality. However, even with perfect caches, the performance of data-
intensive applications is limited by memory access due to compulsory cache misses
when loading previously unseen data.

The processes that drove performance increases in the past no longer work.
Due to physical limitations, manufacturers cannot further reduce operating volt-
ages without compromising reliability. Thus, they cannot increase the operating
frequency without excessive power consumption and heat dissipation. On the
other hand, the microarchitecture advances to increase ILP are not energy-efficient
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because their implementation requires an increasing amount of the processor’s
transistor budget. Consequently, scalar performance has slowed significantly in
recent years.

Since scalar performance is no longer increasing, manufacturers have turned
to increase throughput, by exploiting explicit data parallelism. Multi-core CPUs
integrate multiple processor cores on a single die. Simultaneous multi-threading
(SMT) enables independent threads to utilize different execution units of a core,
which explicitly increases ILP. SIMD instructions work on multiple data items in a
single cycle. These developments mean that multi-core CPUs are becoming more
similar to GPUs.

2.3.3 Dedicated GPUs

GPUs were originally developed as special-purpose processors to accelerate graph-
ics rendering in 3D games. The generic computing capabilities of GPUs are an
artifact of making the graphics rendering pipeline more flexible to better support a
greater variety of 3D games [35]. Consequently, GPUs are optimized for throughput
applications of which graphics rendering is a prime example. Throughput applica-
tions are characterized by a high degree of data parallelism, latency tolerance, and
high demands on memory bandwidth.

Instead of extracting the implicit ILP from an instruction stream, GPUs rely on
explicit data parallelism to keep processing cores busy. Consequently, GPUs contain
many simple processing cores instead of implementing fewer complex processing
cores, as CPUs do. As a result, the processing performance of GPUs scales (almost)
linearly with the transistor budget, whereas the microarchitectural enhancements of
CPUs scale only proportional to the square root of the transistor budget.

Since GPUs are optimized for aggregate throughput instead of serial perfor-
mance, the latency of processing an individual data item is less important. This
latency tolerance has two important effects on the hardware design. First, it allows
us to reduce the processing frequency and use more transistors to implement
processing cores within a given power budget. Second, instead of reducing the
latency of an individual data item through caches and microarchitectural advances,
the latency is hidden by processing other data items. To support latency hiding,
the GPU hardware allows for a massive oversubscription of threads. For example,
each streaming multiprocessor (SM) of an Ampere A100 GPU can execute four
independent warps at a time. At the same time, each SM can manage 64 different
warps that await execution. At each cycle, the SM can switch between active and
inactive warps without overhead. To support these many threads, GPUs contain very
large register files that are orders of magnitude larger than the register files of CPUs.
Compared to CPUs, the GPU cache hierarchy also places more emphasis on large
L1 caches, which are close to the processing cores. In contrast, the shared last-level
cache is smaller on GPUs than on CPUs. The streaming data access pattern of GPU
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graphics workloads exhibits relatively little data reuse, and therefore caches are less
useful.

The memory subsystem of GPUs is optimized for high memory bandwidth, in
order to feed input data to the large number of processing cores. GPUs typically
use more independent memory controllers than CPUs and therefore have a wider
memory data bus. The memory bus is also clocked faster, up to 7 GHz for GDDR6
memory. High-performance GPUs use three-dimensional stacked memory, which is
packaged together with the GPU processor die in a single package. Stacked memory
is addressed through an ultrawide data bus. For example, the Ampere A100 uses ten
512-bit memory controllers, which results in an overall bus width of 5120 bits. This
is an order of magnitude wider than the 8x 64-bit bus width of the EPYC 7702P.

2.3.4 GPU Integration

Traditionally, GPUs are dedicated processors that are accessed over a system bus. In
a typical system, the CPU and the GPU are connected by a PCI express (PCIe) 3.0
bus [52], which offers up to 14.9 GiB/s in theoretical bandwidth. This connection
is an order of magnitude slower than the main memory bandwidth of the CPU
and two orders of magnitude slower than GPU memory. It therefore represents
a significant performance bottleneck [36, 55, 83]. Furthermore, the separate CPU
and GPU memory spaces are not coherent. Consequently, shared data structures
have to be synchronized manually, which increases implementation complexity
[83]. Recent GPU architectures reduce this problem somewhat. For example, AMD
GPUs use PCIe atomics [52] to synchronize execution between CPUs and GPUs
[84]. NVIDIA GPU support software-assisted memory coherence and system-wide
atomics through page faults and automatic page migrations, but this mechanism
causes runtime overheads [85]. On IBM Power9 systems, NVIDIA GPUs can be
connected to the CPU over NVLink 2.0 [86], which supports cache coherence and
atomic operations between CPU and GPUmemory in hardware and eliminates these
overheads [83]. NVLink 2.0 is also 5× faster than PCIe 3.0, which reduces the
effects of data transfer bottleneck [83].

2.3.5 GPU Programming Model

GPUs are programmed in a specialized programming model that allows program-
mers to formulate a parallel program in a scalable way [37]. The programming
model represents GPU hardware as an abstract parallel processor. It defines how
a parallel program is executed on the processor and how the workload is partitioned
to achieve scalable parallelism. As a result, GPU programming differs from CPU
programming in a number of important ways. Two popular implementations of this
programming model are CUDA [37, 87] and OpenCL [88, 89]. In the following,
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we primarily use OpenCL terminology to describe the programming model but also
state equivalent CUDA terms.

2.3.5.1 Abstract Parallel Programming Model

OpenCL represents parallel processors, e.g., multi-core CPUs or GPUs, as com-
putational devices consisting of compute units (CUs). On NVIDIA GPUs, each
compute unit maps to a SM, and on multi-core CPUs, a compute unit represents
a logical CPU core. An OpenCL program is divided into host code and device code.
The host code executes in a single thread on the host CPU. It is responsible for
coordinating operations on the device, e.g., initiating the execution of device code
and transferring data between separate memory spaces. The device code executes
in parallel on the OpenCL device. It consists of kernels that are scalar functions,
expressing the operations on a single datum of a data-parallel task. When launching
a kernel, the programmer specifies a hierarchy of independent kernel instances that
execute on the device. Each kernel instance is called a work item (or a thread in
CUDA). Individual work items are arranged into work groups (called thread block
in CUDA). All work items of a kernel invocation make up the nd-range of the kernel
(called grid in CUDA). The work items of a single work group can cooperate with
each other through special instructions, fast barrier synchronizations, and a very fast
shared memory space called local memory. The last two hardware features enable
the work items of a work group to process a datum, store the result in a shared
cache, and wait until the other work items have finished their computations before
accessing their results. In contrast, work items from different work groups execute
completely independently.

2.3.5.2 Scalable Parallelism

It is through this two-tiered hierarchy of work items and work groups that the
OpenCL and CUDA programming models support scalable parallelism [37]. Using
the programming model, a programmer must partition a problem into two levels.
The first level, i.e., the individual work groups, works on coarse-grained subprob-
lems that can be solved independently in parallel. Each work group executes on a
dedicated compute unit. Multiple work groups can execute on different compute
units in parallel or on the same compute unit sequentially. The second level, i.e.,
the work items within a single work group, work on fine-grained subproblems,
which can be solved cooperatively in parallel. The GPU hardware supports this
fine-grained thread and data parallelism through fast barrier synchronization, access
to shared local memory, lightweight thread creation, and zero-overhead scheduling.

Additionally, independent nd-ranges can execute concurrently given sufficient
hardware resources. This concurrent execution allows for coarse-grained task
parallelism.
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2.3.5.3 Differences to CPU Programming

A major difference between programming on GPUs and CPUs is the number
of running threads and how these threads work together. In general, on CPUs,
comparatively few threads operate independently on coarse-grained subproblems.
Specifically, on multi-core CPUs, each CPU core typically executes a single
hardware thread that consumes an independent partition of the data [13]. Although
threads running on different CPU cores can communicate with each other, they must
avoid performance pitfalls caused by accessing shared or nearby data, e.g., false
sharing. In contrast, GPUs execute many thousands of hardware threads to hide
the latency of individual operations. Moreover, individual threads have to cooperate
with each other to achieve peak performance. A classic example of a data-processing
task that showcases this cooperation to achieve high throughput is parallel reduction
on GPUs [40].

A second important difference between GPU and CPU programming is the
Single Instruction, Multiple Thread (SIMT) [35] execution model. In the SIMT
execution model, a number of work items share the instruction pointer and execute
a common instruction. For example, on NVIDIA GPUs, 32 threads make up a warp
and execute the same instruction at the same time. The SIMT execution model is
similar to the Single Instruction, Multiple Data (SIMD) execution model supported
by CPU vector instructions. However, a crucial difference is that GPU kernels
are written as scalar functions, independent of the SIMD instruction width of the
processor. The GPU hardware also takes care of masking results when different
work items follow separate branches in the kernel code. Nevertheless, to maximize
performance, programmers still have to take hardware details, such as the warp size,
into account. Programmers should avoid diverging code paths for the threads inside
a warp [41, 42]; utilize warp-level primitives [43], e.g., warp-level reductions [44]
or ballot and shuffle instructions [41, 45, 46]; and let the threads of a warp access
adjacent global memory locations, so that the GPU can coalesce these accesses into
as few memory transactions as possible [44, 47].

In conclusion, the content presented in this section serves as the first contribution
to the SPP project, effectively outlining query processing challenges and solutions
within heterogeneous CPU/GPU systems. Through the introduction of a compre-
hensive classification scheme, this work categorizes and clarifies various techniques
that address workload distribution, data transfer bottlenecks, and efficient processor
utilization. Further exploration into the architectures of CPUs and GPUs, integration
strategies, and programming models underlines the foundational work delivered by
this project. These insights significantly enhance the project’s impact on developing
advanced database systems capable of leveraging the unique strengths of heteroge-
neous processing environments.
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2.4 Processing Large Data on GPUs with Fast Interconnects

Despite GPUs’ potential to accelerate database query processing owing to their
high processing power and memory bandwidth, their effectiveness is limited by
challenges such as low onboard memory and insufficient interconnect bandwidth.
This chapter investigates how emerging interconnect technologies, notably NVLink
2.0, address these limitations by facilitating more efficient data transfer and enabling
the processing of large datasets on GPUs. We demonstrate that NVLink 2.0 offers
substantial improvements in speed compared to traditional interconnects like PCI-e
3.0 and optimized CPU implementations, marking a second major contribution to
the SPP project (Fig. 2.1).

Over recent years, GPUs, alongside other co-processors like FPGAs and ASICs,
have gained traction in fields ranging from high-performance computing to deep
learning [39, 48–51]. However, in the database domain, their adoption has been
slower, primarily due to a significant data transfer bottleneck [52]. This bottleneck,
arising from the constraints of current GPU interconnects, hinders effective data
processing at the speed required by modern databases. Our analysis breaks down
the GPU data-processing bottleneck into three critical challenges.

L1: Low Interconnect Bandwidth When the database decides to use the GPU
for query processing, it must transfer data ad hoc from CPU memory to the GPU.
With current interconnects, this transfer is slower than processing the data on the
CPU [53–55]. Consequently, we can only speed up data processing on GPUs by
increasing the interconnect bandwidth [5, 34, 56–58]. Although data compression
[59] and approximation [60] can reduce transfer volume, their effectiveness varies
with the data and query.

L2: Small GPU Memory Capacity To avoid transferring data, GPU-enabled
databases cache data in GPU memory [50, 53, 61, 62]. However, GPUs have limited
on-board GPU memory capacity (up to 32 GiB). In general, large datasets cannot be
stored in GPU memory. The capacity limitation is intensified by database operators
that need additional space for intermediate state, e.g., hash tables or sorted arrays.
In sum, GPU co-processing does not scale to large data volumes.

Fig. 2.1 NVLink 2.0 eliminates the GPU’s main-memory access disadvantage compared to the
CPU
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L3: Coarse-Grained Cooperation of CPU and GPU Using only a single pro-
cessor for query execution leaves available resources unused [56]. However,
co-processing on multiple, heterogeneous processors inherently leads to execution
skew [63, 64] and can even cause slower execution than on a single processor [53].
Thus, CPU and GPU must cooperate to ensure that the CPU’s execution time is the
lower bound. Cooperation requires efficient synchronization between processors on
shared data structures such as hash tables or B-trees, which is not possible with
current interconnects [65].

In addressing these challenges, we explore the capabilities of fast new intercon-
nects, such as NVLink, Infinity Fabric, and CXL, which provide high bandwidth
and low latency, enabling nearly full memory bandwidth access from GPU to CPU
memory. This analysis leads to the proposal of an innovative co-processing strategy
that utilizes cache-coherence offered by these fast interconnects to enable fine-
grained CPU-GPU cooperation. Such advancements not only enhance the scalability
of GPU co-processing but also integrate GPUs more tightly with CPUs, significantly
alleviating the data transfer bottleneck.

This exploration and the subsequent technological advancements form a core part
of the SPP project’s contributions, setting a new standard in the integration of GPUs
into database systems and potentially transforming their applicability in real-world
scenarios.

2.4.1 Analysis of Fast Interconnect

In this section, we analyze the class of fast interconnects by example of NVLink
2.0 to understand their performance and new functionality in the context of data
management. The main improvements of fast interconnects compared to PCI-
e 3.0 are higher bandwidth, lower latency, and cache-coherence. We investigate
these properties and examine the benefits and challenges for scaling co-processing.
Bandwidth & Latency. We start by quantifying how much NVLink 2.0 improves the
GPU’s interconnect performance. We compare NVLink 2.0’s performance to GPU
(PCI-e 3.0) and CPU interconnects (Intel Xeon Ultra Path Interconnect (UPI), IBM
POWER9 X-Bus), CPU memory (Intel Xeon, IBM POWER9), and GPU memory
(Nvidia V100).

We first compare NVLink 2.0 to the other GPU and CPU interconnects in
Fig. 2.2a. Our measurements show that NVLink 2.0 has 5x more sequential
bandwidth than PCI-e 3.0 and twice as much as UPI and X-Bus. Random access
patterns are 14x faster than PCI-e 3.0 and 35% faster than UPI. However, while the
latency of NVLink 2.0 is 45% lower than PCI-e 3.0, it is 3.6x higher than UPI and
2x higher than X-Bus. Overall, NVLink 2.0 is significantly faster than PCI-e 3.0 and
more bandwidth-oriented than the CPU interconnects. Next, we show the NVLink
2.0 vs. CPU memory in Fig. 2.2b. We note that the IBM CPU has eight DDR4-2666
memory channels, while the Intel Xeon only has six channels of the same memory
type. We see that for sequential accesses, the Intel Xeon and IBM POWER9 have
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Fig. 2.2 Bandwidth and latency of memory reads on IBM and Intel systems with Nvidia GPUs.
(a) NVLink 2.0 vs. CPU & GPU interconnects. (b) NVLink 2.0 vs. CPU memory. (c) NVLink 2.0
vs. GPU memory

28% and 65% higher bandwidth than NVLink 2.0, respectively. For random access,
NVLink 2.0 is on par with the Intel Xeon, but 30% slower than the IBM POWER9.
The latency of NVLink 2.0 is 6x higher than the latency of CPU memory. We take
away that although NVLink 2.0 puts the GPU within a factor of two of the CPUs’
bandwidth, it adds significant latency.

Finally, in Fig. 2.2c, we compare GPU accesses to CPU memory over NVLink
2.0 with GPU memory. We observe that both access patterns have an order-of-
magnitude higher bandwidth in GPU memory, but that latency over NVLink 2.0
is only 54% higher. As GPUs are designed to handle such high-latency memory
accesses [38], they are well equipped to cope with the additional latency of NVLink
2.0. Cache-coherence. Cache-coherence simplifies the practical use of NVLink 2.0
for data processing. The advantages are threefold. First, the GPU can directly access
any location in CPU memory, therefore pinning memory becomes unnecessary.
Second, allocating pageable memory is faster than allocating pinned memory [66–
68]. Third, the operating system and database are able to perform background tasks
that are important for long-running processes, such as memory defragmentation [69]
and optimizing NUMA locality through page migration [38].

In contrast, the non-cache-coherence of PCI-e has two main drawbacks. First,
data consistency must be managed in software instead of in hardware. The program-
mer either manually flushes the caches [70] or the OS migrates pages [71]. Second,
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system-wide atomics are unsupported. Instead, a work-around is provided by first
migrating Unified Memory pages to GPU memory and then performing the atomic
operation in GPU memory [72]. Research shows that adding fine-grained cache-
coherence to PCI-e is not feasible due to its high latency [73]. However, NVLink
2.0 removes these limitations [74] and thus is better suited for data processing.

Benefits We demonstrate three benefits of NVLink 2.0 for data processing with
a no-partitioning hash join. First, we are able to scale the probe-side relation to
arbitrary data volumes due to NVLink 2.0’s high sequential bandwidth. With the
hash table stored in GPU memory, we retain the GPU’s performance advantage
compared to a CPU join. Second, we provide build-side scalability to arbitrary data
volumes using NVLink 2.0’s low latency and high-random-access bandwidth. Thus,
we are able to spill the hash table from GPU to CPU memory. Third, we employ the
cache-coherence and system-wide atomics of NVLink 2.0 to share the hash table
between a CPU and a GPU and scale-up data processing.

Challenges Despite the benefits of NVLink 2.0 for data processing, translating
high interconnect performance into high-performance query processing will require
addressing the following challenges. First, an out-of-core GPU join operator must
perform both data access and computation efficiently. Early GPU join approaches
cannot saturate the interconnect [49, 75]. More recent algorithms saturate the
interconnect and are optimized to access data over a low-bandwidth interconnect
[58, 76]. This can involve additional partitioning steps on the CPU [58]. We inves-
tigate how a GPU join operator can take full advantage of the higher interconnect
performance. Second, scaling the build-side volume beyond the capacity of GPU
memory in a NP-HJ requires spilling the hash table to CPU memory. However,
spilling to CPU memory implies that the GPU performs irregular accesses to CPU
memory, as, by design, hash functions map keys to uniformly distributed memory
locations. Such irregular accesses are inefficient over high-latency interconnects.
For this reason, previous approaches either cannot scale beyond GPU memory
[75, 76] or are restricted to partitioning-based joins [58]. Higher interconnect
performance requires us to reconsider how well a NP-HJ that spills to CPU memory
performs on GPUs. Third, fully exploiting a heterogeneous system consisting
of CPUs and GPUs requires them to cooperatively process the join. We must
take into account data locality, synchronization costs, and differences in hardware
architectures to achieve efficiency.

Conclusions Overall, this chapter has thoroughly explored the role of advanced
interconnect technologies such as NVLink 2.0 in overcoming traditional barriers
to GPU utilization in database systems. By addressing key issues such as low
interconnect bandwidth, limited GPU memory capacity, and the need for more
refined CPU-GPU cooperation, these technologies represent a significant leap
forward in database query processing capabilities. The introduction of high-speed,
low-latency interconnects has not only mitigated the data transfer bottleneck but
also enhanced the feasibility of GPUs for handling larger datasets more efficiently.
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Our findings indicate that with improved interconnects, GPUs can achieve
performance parity with CPUs, even in data-intensive scenarios that were previously
impractical. This breakthrough in technology enables a more seamless and dynamic
integration of heterogeneous processing units, offering a scalable solution that
aligns with the evolving demands of modern databases. Furthermore, the strategies
developed for fine-grained synchronization and data sharing between CPUs and
GPUs pave the way for more sophisticated query processing techniques that can
exploit the full potential of both architectures.

The advancements discussed in this chapter are a direct result of the SPP project’s
commitment to pushing the boundaries of technological innovation in database
systems. These contributions not only enhance the performance and scalability of
database systems but also set new benchmarks for future research in this area. As
we continue to refine these interconnect technologies and co-processing strategies,
the implications for the database systems research community and related industries
are profound, underscoring the foundational shift in how data-processing tasks are
approached and executed in heterogeneous computing environments.

2.5 Efficient Stream Processing Through Adaptive Query
Compilation

Following the exploration of advanced computational architectures in previous
chapters, this section introduces Grizzly [77], a groundbreaking stream processing
engine (SPE) that represents the final contribution of the SPP project. While previ-
ous discussions have highlighted the challenges and innovations in handling large-
scale data processing on heterogeneous systems, Grizzly specifically addresses the
unique demands of stream processing in real-time analytics environments.

SPEs traditionally suffer from limitations such as inefficient hardware utilization
and a lack of adaptability to changing data characteristics [78, 79], due to their
reliance on interpretation-based processing models. These challenges often lead to
suboptimal performance, especially as the volume and velocity of data continue
to increase. Grizzly emerges as a solution specifically designed to overcome these
hurdles by employing adaptive query compilation, which significantly enhances the
efficiency of query execution within SPEs.

Grizzly’s innovative approach combines specialized query compilation with task-
based parallelism, tailored to the needs of streaming data. This allows for dynamic
adaptation to data changes through an integration of lightweight statistics collection
and on-the-fly compilation techniques. As a result, Grizzly achieves an order-
of-magnitude improvement in throughput compared to existing SPEs, marking a
significant advancement in stream processing technology.

By focusing on adaptive query compilation, Grizzly addresses a gap in the
current landscape of SPEs, where most systems do not fully exploit the capabilities
of modern hardware. This SPE not only enhances the execution of long-running
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queries over unbounded, continuously changing data streams but also sets new
benchmarks for performance and scalability within the field.

As we detail Grizzly’s architecture and operational dynamics, it becomes clear
that this SPE not only aligns with the objectives of the SPP project but also
pushes the boundaries of what is possible in real-time data processing. This section
will explore how Grizzly tackles fundamental challenges in stream processing,
such as managing diverse windowing semantics and optimizing long-term query
performance amidst fluctuating data conditions, thereby demonstrating its pivotal
role in advancing stream processing technologies.

2.5.1 Query Compilation

Over the last decade, query compilation for data-at-rest processing has been
extensively studied [11, 80, 81] and implemented in several systems [81, 82]. To
generate code for a query, many of these systems apply the produce/consume [81]
model. In this approach, a query compiler segments a query plan into pipelines
whenever a materialization of intermediate results is required (e.g., for Aggregation
or Join operators). All operations inside a pipeline are fused to one combined
operator that performs a single pass over the data such that data stays in CPU
registers [81]. To implement the produce/consume model, the compiler requires
each operator to implement two functions. First, the produce function is called on
the root operator, which navigates the query plan from the root to the leaves and
segments the query in pipelines. Second, the consume function is called from the
leaf nodes, navigates to the root node, and generates the code for each pipeline.
This results in a very compact code fragment that combines the processing of all
pipeline operators.

2.5.2 Grizzly

In this section, we introduce Grizzly, our novel adaptive, compilation-based SPE.
Grizzly’s primary goal is to provide a high-level query interface for end users while
at the same time achieving the performance of hand-optimized code.

2.5.2.1 Challenges for Compilation-Based SPEs

Similar to query compilation for data-at-rest, a compilation-based SPE segments
queries into multiple pipelines and fuses operators within pipelines. However,
stream processing workloads introduce several new challenges.
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Challenge 1 Stream processing semantics. To the best of our knowledge, there
is no SPE that is able to fuse stream processing queries involving windowing.
The main challenges are threefold. First, the window triggering depends on the
window assignment and is order sensitive. Second, the window function needs to
be performed after the windowing but defines the state that needs to be stored in
windows. Third, triggering involves a final aggregation step (e.g., to compute the
average). The cyclic control flow between these three tasks makes it hard to apply
state-of-the-art query compilation techniques to an SPE because they assume only
linear compile-time dependencies between operators.

Challenge 2 Order-preserving semantics. In contrast to relational algebra, the
outcome of stream processing operators depends on the order of records in the
data stream. Thus, data-parallel execution requires coordination among processing
threads before the next pipeline can process window results. A compilation-based
SPE has to take this requirement into account during code generation. As a result, a
compilation-based SPE has to adjust the coordination among threads depending on
the query to ensure correct processing results while enabling efficient processing.

Challenge 3 Changing data characteristics. Stream processing queries are
deployed once and executed for a long time, while the input stream may change.
In particular, they may face unpredictable changes in the data characteristics at
runtime, e.g., a changing number of distinct values or a changing data distribution
of keys. As a consequence, the efficiency of generated code may change over time.
Thus, a compilation-based SPE has to re-evaluate the applied optimizations and, if
required, generate new code during runtime.

2.5.2.2 Core Principles of Grizzly

Grizzly addresses the challenges by applying query compilation, enabling task-
based parallelization, and adaptively optimizing the generated code with regard to
hardware and data characteristics.

Query Compilation. Grizzly introduces query compilation for stream process-
ing and handles the complexity of windowing. Within pipelines, Grizzly fuses
operations to compact code fragments and performs all pipeline operations in one
single pass over a chunk of input records without invoking functions. Thus, data
remains in CPU registers as long as possible without loading records repeatedly. To
improve data locality in contrast to managed runtimes, Grizzly avoids serialization
and accesses all data via raw memory pointer. As a result, query compilation in
Grizzly increases code and data locality significantly.

Order-preserving task-based parallelization. To exploit multi-core CPUs effi-
ciently, Grizzly executes pipelines concurrently in a task-based fashion on a global
state. This eliminates the overhead of data pre-partitioning and state merging.
However, it requires coordination between threads to fulfill the order requirements
of stream processing. Grizzly addresses these by introducing a lightweight, lock-
free window-processing approach based on atomics.
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Fig. 2.3 Query Execution Workflow in Grizzly [77]

Adaptive optimizations. Grizzly introduces a feedback loop between code
generation and query execution to exploit dynamic workload characteristics. Grizzly
continuously monitors performance characteristics, detects changes, and generates
new code variants. As a result, Grizzly performs speculative optimizations and
assumptions about the incoming data. If an assumption is invalidated, Grizzly re-
optimizes a code variant. To reduce the performance overhead, Grizzly combines
lightweight but coarse-grained performance counters with fine-grained code instru-
mentalization.

2.5.2.3 Compilation-Based Query Execution

In Fig. 2.3, we present the architecture of Grizzly’s compilation-based query
execution model, which consists of four phases. From the logical query plan (1)
to the continuous adaption to changing data characteristics (4).

5.2.1 Logical Query Plan In the first phase, Grizzly offers a high-level Flink-like
API and translates each query to a logical query plan. This plan contains a chain
of operators that consumes a stream with a static source schema. Grizzly supports
traditional relational operators, e.g., selection and map, and stream-processing-
specific operators for windowing. Window definitions consist of a window type,
a window measure, and a window function. Furthermore, Grizzly supports global
windows that create one aggregate over the whole stream and keyed windows that
created partitioned aggregations per key. Based on these operators, Grizzly supports
common stream processing queries.

5.2.2 Query Compiler In the second phase, Grizzly segments the logical query plan
into pipelines, performs optimizations, and generates code for each pipeline.

Segmentation Query compilers for data-at-rest fuse operations until they reach a
pipeline-breaker, which requires a full materialization of intermediate results (e.g.,
joins or aggregations). However, the unbounded nature of data streams prevents the
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full materialization of intermediate results. To this end, Grizzly separates pipelines
at operators that require partial materialization, similar to soft-pipeline-breakers
[78]. In particular, non-blocking operators (e.g., map or filter) are fused. In contrast,
all blocking operations in-stream processing are computed over windows (e.g.,
aggregations or joins) and terminate pipelines. Thus, the support of windowed
operations is crucial for a compilation-based SPE.

Optimization After query segmentation, Grizzly optimizes the individual
pipelines. To this end, Grizzly exploits static information, e.g., the hardware
configuration, as well as dynamic data characteristics. To collect data characteristics,
Grizzly introduces fine-grained instrumentation into the generated code. This
enables Grizzly to derive assumptions about the workload, e.g., predicate selectivity
and the distributions of field values. Based on these assumptions, Grizzly chooses
particular physical operators.

Code Generation In the last step, Grizzly translates each physical pipeline to
C++ code and compiles it to an executable code variant. Note that all variants
of the same pipeline are semantically equivalent but execute different instructions
and access different data structures. For code generation, Grizzly follows the
produce/consume model and extends it with support for rich stream processing
semantics. In particular, we consider code generation and operator fusion for the
window operator.

5.2.3 Execution In the third phase, Grizzly executes the generated pipeline variant.
Each variant defines an open and close function to manage the state of the
variant. Depending on the physical operators, state is completely pre-allocated or
dynamically allocate during execution. For the input stream, Grizzly exploits the
fact that input records physically arrive in batches over the network and schedules
each batch as a task for an individual thread to utilize multi-core CPUs. Thus,
pipelines and their associated state are accessed concurrently by multiple threads.
This introduces challenges for window processing, as all threads have to pass the
window-end before one thread outputs the result. To this end, Grizzly introduces
a lock-free data structure, such that multiple threads can concurrently process a
window without starvation.

5.2.4 Profiling & Adaptive Optimization In the final phase, Grizzly continuously
collects profiling information and reoptimizes the query in two steps. During query
execution, Grizzly collects hardware performance counters, e.g., number of cache
misses, to detect changing data characteristics. Hardware performance counters
have a negligible performance impact but give a coarse-grained intuition about the
evolution of data characteristics. If the collected counters indicate a change, Grizzly
collects more fine-grained profiling information, via code instrumentation. Based on
this information, Grizzly re-optimizes the query and generates a new code variant.

In our paper [77], we have demonstrated that Grizzly and a handwritten C++
implementation are the only solutions that fully utilize the available hardware to its
maximum potential in the context of stream processing engines. Our comparative
analysis shows that Grizzly not only matches but significantly outperforms state-of-
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the-art SPEs by up to an order of magnitude. Importantly, this superior performance
does not come at the expense of generality. Grizzly maintains a versatile and
adaptable framework suitable for a wide range of streaming applications. These
findings underscore Grizzly’s advanced architectural design and optimization capa-
bilities, positioning it as a leading solution in the field of high-performance stream
processing.

The successes demonstrated by Grizzly reflect the overarching objectives of the
SPP project to push the frontiers of processing technologies and adapt them for
real-world applications. Through collaborative research and development, the SPP
project has made substantial strides in enhancing the capabilities of SPEs. These
achievements not only highlight the project’s impact but also set a benchmark for
future endeavors in the field.

2.6 Conclusion

This chapter has presented key findings from the SPP project’s exploration of query
processing on modern hardware. We have specifically analyzed the utilization of
GPUs to enhance query performance in heterogeneous systems. Our study has
acknowledged the substantial benefits of leveraging GPUs while also identifying a
significant research gap: a predominant focus on dedicated GPUs, often neglecting
integrated GPUs. This oversight limits the broader applicability of our findings, as
optimizations tailored for dedicated GPUs do not necessarily apply to integrated
ones, given their distinct performance characteristics.

Furthermore, the analysis has highlighted a prevalent CPU-centric approach
in the implementation of relational heterogeneous query processors, where the
processing model of the GPU was often dictated by that of the CPU. This realization
underscores the necessity for further research to establish the most effective
processing models for GPUs and to explore potential synergies between CPU- and
GPU-processing models.

The advent of innovative GPU technology, particularly fast interconnects like
NVLink 2.0, opens new research avenues and practical applications in database
processing and the integration of machine learning with relational query processing.
However, the adoption of such cutting-edge technologies in commodity hardware
remains limited, suggesting that their full potential is yet to be realized in main-
stream applications.

Additionally, this chapter introduces Grizzly, an adaptive, compilation-based
SPE designed within the framework of the SPP project. Grizzly stands out by
supporting various window types, measures, and functions and employs adaptive
optimizations to accommodate dynamic data characteristics. It leverages profiling
techniques and task-based parallelization to maximize the utilization of modern
multi-core CPUs, ensuring that stream processing’s ordering requirements are met
effectively.
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In summary, this chapter not only underscores the promise of heterogeneous
hardware in enhancing query processing but also highlights the challenges and
opportunities that lie ahead. It calls for a broader research focus that includes
integrated GPUs and fast interconnects and showcases Grizzly as a pioneering
effort in adaptive, compilation-based stream processing. This effort represents a
substantial contribution of the SPP project to the field, pushing the boundaries of
what is possible in modern data-processing environments.
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Chapter 3
Efficient Event Processing on Modern
Hardware

Marius Kuhrt , Nikolaus Glombiewski , Michael Körber ,
Andreas Morgen , Dominik Brandenstein , and Bernhard Seeger

Abstract Complex event processing (CEP) is an essential technology for analyzing
streams of events. A key feature of a modern CEP architecture is the ability to
process both continuous queries and analytical ad hoc queries on high-volume
streams. Both query types support common operations (filter, aggregation, joins)
known in event stream and database systems. Additionally, a crucial and unique
operation in CEP is pattern matching, which matches user-defined predicates to
subsequences of events.

We present our solution for a system supporting continuous queries, fast
ingestion, and efficient analytical ad hoc queries. The system follows the principles
of a Lambda Architecture and is specialized for a large variety of pattern-matching
queries, including sequential, situation, and group patterns.

To offer efficient processing, we use modern hardware in each of the components.
For continuous queries, we explore multi-core CPUs and GPUs. For ingestion and
ad hoc queries, we analyze SSDs and persistent memory as ways to provide a robust
system. Furthermore, we explore unique characteristics of the hardware and event
processing applications such as temporal data, energy efficiency, and compression.
We give an overview of the overall systems, highlight the research accomplishments,
and describe common application scenarios that benefit from our architecture.

3.1 Introduction

In many applications, it is of utmost importance to monitor processes, business
objects, and infrastructures continuously. Examples of such applications are fraud
detection of (credit card) transactions, replenishment of a warehouse, and life-
maintenance of complex systems like aircraft and production plants. The primary
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goal is to react to unusual situations and state changes quickly, e.g., block user
transactions, reorder items in a warehouse, and trigger an emergency alarm.
These data-driven applications have led to new requirements for data processing
systems like supporting the ingestion of potentially infinite data streams and
delivering answers with low latency. While stream processing systems offer general-
purpose functionality for data-driven applications, complex event processing (CEP)
additionally provides a temporal data model and dedicated operators like Match-
Recognize (MR) for processing temporal data streams, also known as event streams.
The first designs of CEP systems were limited to processing event streams in main
memory without considering the persistence of streams. Such a traditional CEP-
based approach comes with certain limitations. First, many applications require
persistence and reproducibility to make real-time CEP decisions legally secure.
Second, a postmortem analysis of alert situations often leads to a better situational
understanding and supports improving the reactive actions if such situations are
observed again.

This chapter introduces the two layers of a stream architecture similar to the
Lambda Architecture [1]. The first layer offers the CEP system JEPC [2] for in-
memory processing, while the second layer consists of a novel event store called
ChronicleDB [3] for making event streams persistent. The CEP system JEPC is
unique in the sense that it serves as a bridge to various implementations of operators
running on modern hardware like iGPUs. ChronicleDB is a new type of database
system that offers high ingestion rates and supports the typical operators known
from CEP systems. Both systems are semantically equivalent, i.e., queries running
at the same snapshots on one of these systems return the same results.

The chapter is structured in the following way. After a few preliminaries,
Sect. 3.4 introduces the Lambda Architecture with emphasis on the design of Chron-
icleDB. Then, Sect. 3.5 first introduces the probably most important CEP operator
Match-Recognize (MR) and presents a novel index-accelerated implementation
offered in ChronicleDB. Furthermore, we go beyond event streams to so-called
situation streams. Finally, emphasis is given to so-called group patterns in spatial
applications. Section 3.6 examines the problem of making the stream processing
algorithms energy-efficient by using iGPUs as hardware accelerators. Section 3.7
studies offset-value codes, a special compression technique for saving expensive
comparisons in composed keys. Section 3.8 provides examples of applications
built on the technologies previously introduced. Finally, Sect. 3.9 provides a brief
conclusion and an outlook to future work.

3.2 Preliminaries

This section addresses problems related to events, event streams, situations, and
situation streams. First, we provide a formal introduction to these concepts. All of
them are related to a time domain T that is discrete and ordered. Furthermore, a
payload p is assumed to be from a given domainD.
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3.2.1 Data Model

Definition 3.1 (Event) An event e is a pair (p, t) consisting of a payload p ∈ D
and an event timestamp t ∈ T. The validity of e is the instant t .

Definition 3.2 (Situation) A situation s is a triple (p, ts, te) consisting of a
payload p ∈ D and two timestamps ts (start timestamp) and te (end timestamp)
where ts, te ∈ T and ts < te. The validity of s is the half-open time interval
[ts, te).

The notion of an event and a situation are the basis for defining event streams
and situation streams, respectively. For the sake of limited space, we do not make
the general distinction between system time and application and refer the interested
reader to [4] for a detailed discussion. We first introduce a formal definition of an
event stream and a situation stream.

Definition 3.3 (Event Stream, Situation Stream) An event stream E is a poten-
tially unbounded sequence of events 〈e1, e2, . . .〉 with ei ∈ D× T ordered by their
event timestamp t .
A situation stream is a potentially unbounded sequence of situations 〈s1, s2, . . .〉
with si ∈ D× T ordered by their event timestamp te.

Without loss of generality, we assume a stream is totally ordered, i.e., there are
no two stream elements with the same order timestamp.

3.2.2 Operations

The following section gives a brief overview of the underlying operations that need
to be supported for event streams and situation streams. While most of the snapshot-
based operations are known from the early days of event processing, we focus on
those operations that are very unique for event processing.

The first proposals for event processing systems by the database community like
[5] strived to introduce (sliding) window operators and to limit the processing to
these finite windows rather than on the entire, potentially infinite stream. In general,
a window consists of two parameters: size and slide. The first parameter cuts out
the maximum subsequences (the window) out of the stream such that the time
difference among the stream elements is at most size. The second parameter slide
denotes the length of the jumps until the next subsequence has to be considered.
Here, we assumed a temporal window, but as shown in [4], count windows can also
be modelled as special cases of temporal windows.

The concept of windows is used to define the classical stateful operators of
the relational algebra like joins and aggregates on event streams. In addition,
stateless operations like filters are directly applicable to streams without further
modifications.
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However, the focus of our work is on more advanced pattern queries supporting
the search for specific subsequences within the stream. As an example, consider
the pattern query in Listing 3.1 expressing a landing maneuver of an airplane
assuming that the stream FLIGHT continuously delivers the values of a plane.
The pattern query is expressed by Match-Recognize (MR), which is part of the
SQL standard since 2016 [6]. MR consists of a PATTERN clause where a regular
expression of symbols is given and a DEFINE clause for the specification of the
symbols, each of them representing a Boolean expression. For example, symbol A
is a range condition on the variables VEL and BA, and the condition of B uses
the function PREV to refer to the previous values of VEL and BA. For the lack of
space, we refer the interested reader to [6] for the details of MR. While almost all
proposals for pattern queries assume event streams as input, our work presented in
[7] supports pattern queries with more powerful predicates on situation streams. In
addition, MR is not only of relevance for in-memory event stream systems, but it
also has become an important operation in conventional database systems. These
two extensions of pattern matching have largely motivated our work, and we will
present our approaches later in more detail.

Listing 3.1 Analytical pattern matching query for landing maneuvers

1 SELECT COUNT(*) FROM FLIGHT MATCH_RECOGNIZE(
2 ORDER BY T
3 MEASURES A.T AS TS, C.T AS TE
4 PATTERN ( A B+ C ) WITHIN 15 MINUTES
5 DEFINE
6 A AS VEL >= 150 AND BA > 500,
7 B AS PREV(VEL) > VEL AND BA <= PREV(BA) - 20,
8 C AS VEL < 80 AND GA < 200
9 )

3.3 Related Work

Since the beginning of the current century, there has been a plethora of early
work [8–10] addressing the challenging problems of event processing. Our work
has been largely inspired by PIPES [11] and its extension JEPC [2], one of the
early approaches for event processing to support implementations of operators
using hardware accelerators. Since the first seminal works addressing event pattern
matching [12, 13], there has been a continuation of work (see [14] for a recent
survey). Patterns are not only known from event processing but also in other
domains like moving objects [15].

While most work on event processing focuses on in-memory processing, there
have been a few system approaches addressing the problem of persistent event
streams. These systems have to support high ingestion rate [16], pattern queries
[17, 18], and ad hoc analytics [19]. For that, novel approaches employ hardware
accelerators like GPUs [20], SSDs [21], and persistent memory technology [22]
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Fig. 3.1 Overall system
architecture

in combination with advanced algorithms for compression [23] and indexing [3].
While these approaches aim at improving latency and throughput, there have
been only very few works, e.g., [24], on improving the energy footprint of event
processing.

3.4 System and Hardware Overview

The overall system design follows the principles of the well-known Lambda
Architecture [1]. Figure 3.1 shows an overview of the components1 as well as
hardware used in each component. Each component can be addressed via a shared
event processing query language, i.e., the same queries can be processed on a
database on historical data (batch layer) as well as in real time (speed layer).
ChronicleDB is the long-term data storage component and the core of the batch
layer. It is optimized for storing and querying event data, with optimizations
for SSDs and persistent memory. JEPC represents processing at the speed layer.
Originally conceived as a middle layer for event processing with various bridges
to different event processing systems, new bridges address event processing with
GPUs. Even though JEPC is optimized for low latency, windows in common event
processing operations result in a natural batching of events that fits GPU processing.
Furthermore, some types of pattern matching in JEPC have been optimized for
multi-core and distributed processing.

3.4.1 ChronicleDB

ChronicleDB is a database system specialized for storing and querying multi-variate
event stream data. Event application scenarios usually involve a high amount of
continuously arriving data in a short period of time. To support these scenarios,
ChronicleDB is designed around three requirements:

(R1) Ingestion of high input rate streams
(R2) Fast stream replay and time travel operations

1 Source code for our research projects is available at https://github.com/umr-dbs.

https://github.com/umr-dbs
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(R3) Fast processing of point, range, and aggregation queries on secondary
attributes

While R1 is required to avoid load shedding in cases of high-volume input streams,
R2 and R3 allow excellent query response times in a variety of use cases like
postmortem analysis of event stream queries and continuous batch processing
for dashboard applications as well as to some degree serving traditional OLAP
demands. Since ChronicleDB stores the entire event stream as is, R1 focuses
on ingestion of events, and we only support deletes of time ranges for space
reclamation. The following three sections will overview ChronicleDB’s three core
components and briefly describe their interaction in the system. Then, we will briefly
discuss novel optimizations for ChronicleDB.

3.4.1.1 Index and Storage Design

Primary Index ChronicleDB’s target data model are multivariate event streams,
i.e., data consisting of multiple measurements per timestamps, with a fixed schema.
Thus, a single primary index in ChronicleDB stores events in a Temporal Aggregated
B+-tree (TAB+-tree) index. The overall index layout is presented in Fig. 3.2a. At
its core, the index is an augmented B+-tree with the event’s timestamp as its key
domain and doubly linked nodes on every level. This index design is important for
temporal access (R2). To support fast ingestion (R1), ChronicleDB primarily adopts
an append-only model, where the data log is also the database. This is reflected in
the index design. As the default behavior, insertions are treated as a continuous bulk
loading operation in a traditional B+-tree index. Under the assumption that the event
stream is in temporal order, a new event can be appended to the leaf node containing
the most recent data. This leaf node and its predecessors are referred to as the right
flank of the TAB+-tree. To speed up ingestion in temporal order, the right flank is
kept in DRAM at all times. Thus, without an additional log [25], the last leaf can be
lost in a crash.

Secondary Index Besides the primary index, ChronicleDB allows adaptive and ad-
hoc creation of two types of secondary indexes, which are referred to as heavyweight
and lightweight indexes. Heavyweight indexes are traditional secondary index struc-

(a) (b)

Fig. 3.2 ChronicleDB layout [22]. (a) Primary index (TAB+-tree). (b) Out-of-order (OOO)
handling
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tures such as LSM [26] built for one or more attributes of the stream. Leaf pages of
heavyweight indexes refer to primary index pages with a record offset. Lightweight
indexes are an adaptation of small materialized aggregates (SMAs) [27], which can
be arbitrary aggregate functions on the event’s data domain. In contrast to [27],
those aggregates are stored within the primary index nodes of the TAB+-tree. Each
child reference is associated with aggregated information of their respective nodes.
In Fig. 3.2a, an index entry consists of an overall event count aggregate and the
minimum and maximum values for each attribute. The interleaved aggregates boost
the query performance (R3) of event processing queries.

Storage Layout Efficient data compression is of utmost importance in reducing
the high storage cost of event streams. Especially continuous sensor values, such as
temperature and humidity measurements, feature a lot of similar values that can be
easily compressed to reduce space requirements. Thus, ChronicleDB compresses
each TAB+-node with a configurable compression algorithm. However, the sizes
of the compressed nodes are not constant anymore, requiring an explicit mapping
to fixed-size block addresses. An address translation layer optimized for sequential
access patterns maps logical node IDs to physical storage locations, which solves
this issue with minimal impact on insertion and query performance.

Out-of-Order Data When data does not arrive in temporal order, it cannot be
appended to the TAB+-tree as part of the continuous bulk loading process. This
type of data is known as out-of-order (OOO) data. Inserting OOO data into existing
tree nodes can lead to cascading node splits and result in sub-optimal fill levels,
negatively affecting insert and query performance. ChronicleDB uses a three-step
strategy depicted in Fig. 3.2b to offset performance degradation from OOO data.
First, OOO data is put into a dedicated OOO queue to preserve the append-only
nature. Second, nodes in the TAB+-tree can leave spare space to absorb OOO
insertions without cascading node splits. For cheap spinning disks used to store
large amounts of data, this has the additional benefit of preserving a sequential
node layout. Third, whenever the OOO queue reaches a given size, it is merged
into the primary index. This merge stabilizes query performance by adjusting
lightweight indexes to more accurate values and merging logical temporal regions
into physically near ones.

3.4.1.2 Optimizations

Various research [3, 22, 28, 29] optimized ChronicleDB for three different perfor-
mance dimensions: ingestion, query, and robustness. Novel algorithms for each
dimension focus on extending the core design principles described above and
leveraging characteristics of event data.

Ingestion Even with fast random access of modern SSDs, sequential I/Os are
still faster [22]. For better ingestion performance, load scheduling in ChronicleDB
can turn off secondary indexes. Removing random access required for maintaining
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heavyweight secondary indexes trades query performance for ingestion perfor-
mance. Since ChronicleDB maintains application time order in the primary index,
the amount of OOO data also determines the ingestion performance, because
maintaining a persistent OOO queue requires random access. In case of heavy
load, the temporal dimension of the primary index can be switched to system
time [3] while still maintaining lightweight indexing information on the application
time dimension. This strategy guarantees a sequential access pattern for ingestion.
A query recognizes different temporal dimensions within the primary index and
introduces an optional sorting step for regions in system time. The lightweight index
on application time can be used to speed up sorting [29], offsetting some of the query
performance penalties.

Query Since ChronicleDB supports event processing queries, it has a query
pipeline that uses the primary index for fast access to temporal regions that can
be fed into JEPC [3]. This results in the same semantics as the event processing
component. This pipeline has an optimization layer to speed up common event
processing queries. Given a temporal region, a core mechanism is scanning a tree
level above the leaves for lightweight index information. If a lightweight index on
a query predicate exists, some temporal regions can be excluded for replay. This is
a straightforward way to speed up filter or join queries. For aggregation queries,
ChronicleDB also supports arbitrary aggregates within lightweight indexes. If a
lightweight index aggregate matches the query aggregate and the result aggregate for
a temporal window can be composed from partial aggregates, a query mechanism
can use the lightweight index aggregate to save computation time as well as explore
favorable access IO patterns [3, 28]. Similar optimizations exist for sequential
pattern-matching queries, which will be discussed in more detail in Sect. 3.5.1.

Robustness An essential requirement for an event processing database is robust
ingestion performance. If the characteristics of the stream (i.e., arrival rate, out-
of-order data, etc.) vary over time, the system might support varying ingestion
rates over time. However, if a user requires hard guarantees for data ingestion to
avoid any data loss, this behavior is unacceptable. To support robust performance,
the load scheduler observes stream characteristics to change the ingestion scheme
(i.e., a switch from application time indexing to system time) to support a robust
ingestion rate. For secondary indexes, waves of node splits in B-trees or waves
of merge activity in LSM trees also impact query and ingestion performance. De-
amortization techniques can reduce or eliminate these waves [29, 30]. Furthermore,
using persistent memory in ChronicleDB improves the overall robustness of the
system. A study [22] analyzed moving different components of ChronicleDB (the
right flank, lightweight indexing information, address translation, and the OOO
queue) to persistent memory. Through new hardware configurations, it is possible to
achieve a new type of balance between ingestion, query, and recovery performance.
By using fast random access on a persistent medium, it is possible to reduce
performance fluctuations, resulting in a robust system [29].
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3.4.2 Java Event Processing Connectivity (JEPC)

Java Event Processing Connectivity (JEPC) is a middle layer for event processing
systems [2]. Initially, JEPC offered bridges for complex event processing platforms
to obey a standardized semantics [31] based on a multi-set algebra [32]. Besides
these bridges, JEPC has a bridge to mobile devices for energy-efficient pre-
processing [33]. Most core research contributions in our system are implemented
in the native bridge that consists of operators that match the algebra and semantics
of our event processing language.

Although JEPC supports the standard event processing operators, it focuses on
pattern matching with specialized operators for sequential, situation, and group
patterns, not all of which are supported in state-of-the-art CEP software such as
Apache Flink [34]. For event processing on modern hardware, we use the same
semantics for implementations on multi-core CPUs, dedicated GPUs, and integrated
GPUs. The following sections focus on our results for various pattern-matching
implementations as well as algorithms for GPU processing.

3.5 Event Pattern Matching

Pattern matching is probably the most essential operator for the analysis of event
streams. The core pattern-matching operator corresponds to the Match-Recognize
(MR) clause that first occurred in the area of complex event processing (CEP).
However, MR is now part of the current SQL standard [6] and first implementations
exist for database systems [35] as well as stream processing engines [34]. An
example of the semantics was discussed in Sect. 3.2.2. In this section, we will first
discuss index acceleration techniques for pattern matching as defined in MR and
used in ChronicleDB. Then, we will discuss a second type of pattern-matching
query to support so-called situation patterns. We will briefly describe processing
techniques for multi-core CPUs and distributed systems based on JEPC. Finally, we
will describe a third type of pattern query for matching evolving groups of moving
spatial objects in JEPC.

3.5.1 Index Acceleration

The basic approach for index acceleration in pattern-matching queries is to use an
index on a condition to find regions of a stream where all possible matches for a
given query exist. We term those regions replay intervals in the following. For each
replay interval, a standard pattern-matching algorithm provides a correct result for
a query.
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(a) (b)

Fig. 3.3 Index-based pattern-matching evaluation [17]. (a) Evaluation strategy. (b) Experimental
results

The example query in Listing 3.1 contains two types of predicates. A range
predicate (e.g., VEL ≥ 150) checks if an attribute falls into an attribute range. A
delta predicate (e.g., PREV(VEL) > VEL) checks if the value of an event stream
changed in comparison to a previous event in the stream. We will focus our
discussion on the handling of range predicates [17] and will then briefly mention
a method for handling delta predicates [29].

As a baseline, we assume that there exist (some) index structures that can answer
a range predicate efficiently, e.g., a B-tree on the attribute.

Figure 3.3a shows the core idea of the approach for a pattern ABC∗D such that
the symbols A, B, and D are range predicates on attributes with index support and
C is some predicate without index support. In the first step, an index query for A
reveals two possible matches in the stream, resulting in two replay intervals. In the
second step, an index query for B can exclude one of those replay intervals due to
a temporal constraint (i.e., B happens too late after A). An additional query for D
shows no improvements when constructing replay intervals.

The baseline approach shows the key challenge for index-accelerated pattern
matching: There are diminishing returns when using multiple index structures
for the query. Therefore, the system has to select a suitable set of indexes for
efficient query processing. We developed a novel cost model to choose the best
set of indexes. Given the selectivity of a range condition, we assume the events
fulfilling the condition occur uniformly over the data streams. In particular, the cost
model considers the sequential nature of pattern matching—combining subsequent
symbols such as A directly followed by B has a higher combined selectivity
than symbols with arbitrary gaps in between them. For details, we refer to the
full publications [17]. In Fig. 3.3b, we compare a replay of the entire stream into
a pattern-matching operator, using all index structures and our cost-model-based
approach for pattern-matching queries with various complexities, i.e., the number
of range conditions in the query. Our cost-model-based approach outperforms other
methods. To overcome the assumption of equally distributed symbols, ChronicleDB
introduces an additional preprocessing step to identify temporal regions where a
symbol can occur with a certain frequency.
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The given approach works well for range conditions but fails if the range
conditions are not very selective or do not occur in a pattern-matching query. In
addition, we developed a new indexing strategy for ChronicleDB [29] to handle
delta predicates. Since delta predicates compare two values within a stream with
each other, the underlying idea is to add index capabilities for the corresponding
difference. Moreover, lightweight indexing contains information about minimum
and maximum attribute values, and thus, ChronicleDB already offers coarse-grained
filtering by computing the difference between those two values. In combination with
an efficient scan and a highly compressed storage strategy for events (with some
similarities to Column Sketches [36]), ChronicleDB supports delta predicates in its
current index-accelerated implementation of pattern matching.

3.5.2 Situation Pattern Matching

The sequential nature of regular expression-based patterns as in MR has two
major deficiencies. First, the expressible temporal relationships are limited to
before/after/at the same time relationships. Conditions lasting for periods of time
and their temporal relationships (e.g., A happens during B) cannot or only hardly
be expressed in this approach. Second, due to the sequential nature of this process,
efficient parallel execution strategies are scarce. Nevertheless, efficient parallel and
distributed execution is a crucial aspect of dealing with ever-increasing data rates.

As a solution to both issues, we developed TPStream [37], an operator for
pattern matching on situation streams. Unlike previous approaches that require
situations as input, TPStream derives situations on the fly from point-based events
before matching them. By closely coupling deriving situations and pattern matching,
TPStream improves the detection latency because matches can be detected before
the situations are completed. Figure 3.4 shows an example of the basic concept.
A traffic monitoring system is continuously receiving sensor data from connected
cars (i.e., position, speed, acceleration). The stream of raw sensor readings is
transformed into three situation streams (acceleration, speeding, deceleration), one
for each component of the pattern. A pattern match occurs when an acceleration
is followed by a deceleration situation and a speeding situation overlaps with both.
A traditional situation-based matching approach would detect matches after each

Fig. 3.4 Detecting aggressive driving with situation-based pattern matching [7]
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Listing 3.2 TPStream—aggressive drivers query

1 FROM CarStream PARTITION BY id
2 DEFINE A AS acceleration > 7m/s2 AT LEAST 3s,
3 D AS acceleration < -8m/s2 AT LEAST 1s,
4 S AS speed > 88 mph
5 PATTERN A overlaps;during S
6 AND D overlaps;during S
7 AND A before;meets D
8 WITHIN 6 minutes
9 RETURN FIRST(A.id) AS id;

situation concluded. In the above example, TPStream allows finding a match earlier
while a situation is still ongoing. Listing 3.2 shows the example in the TPStream
query language, which is similar to the Match-Recognize syntax. Note that, in
the PATTERN clause, there are multiple valid alternatives for the relation between
situations, e.g., D (deceleration) and S (speeding) might overlap, but D might also
happen during S. This is also the case in the example in Fig. 3.4.

For multi-core processing, TPStream supports processing events in parallel
[7]. If the query has a PARTITION BY clause, threads process each partition in
parallel before a final merge step sorts results into temporal order. If there is
no meaningful way to partition data, TPStream batches consequent events and
processes batches in parallel. The same principles apply to distributed processing.
Experiments confirmed the benefits of early result detection as well as the effective-
ness of parallelization on both multi-core CPUs and distributed processing via an
implementation in Apache Kafka.

3.5.3 Group Pattern Matching

The detection of groups of moving objects is a challenging task in moving object
databases [38]. While a few tailor-made algorithms exist, an important challenge
is the translation of group pattern detection from moving object databases to event
streams. As an underlying data model, we consider a spatial event, where each event
contains an identifier and a spatial position to reference a moving object and its
location.

The cross-pattern operator [38] allows the definition of a wide range of different
patterns for groups of moving objects. The operator has three parameters: a predicate
p, a minimum duration md , and membership constraint mc. The predicate p is
essential for determining which moving objects are in the same group, e.g., objects
within a certain radius. The minimum duration md specifies how long each object
has to be in the group. The membership constraint indicates the minimum number
of objects mc in a matching group at any given time.
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Fig. 3.5 Pattern matching on
evolving groups of moving
objects

Figure 3.5 shows an example of a cross-pattern operator and the life cycle of a
match. The pattern is defined such that the objects need to fulfill a range constraint p,
moving objects need to be members for at least md = 2 timestamps, and the group
has to consist of at least mc = 3 moving objects. At time t2, the green objects form a
group as they are located within the specified range. This group moves together for
some time and dissolves at time t4. As all constraints are met, the group is a valid
match. In contrast, the moving objects on the right do not form a match, as the red
and blue objects are only part of the group for a single timestamp. This is typically
the case when objects only cross the path of a group or move along for a short time.

Originally introduced for spatiotemporal databases [38], the translation to con-
tinuous queries in event streams causes challenges, which makes a new processing
method necessary. Hence, we have developed the cross-pattern operator for spa-
tial event streams. This includes the incremental processing of continuous event
streams, as well as parallelization and suitable index structures, to achieve low
latency and high throughput required in this context.

Our method for processing spatial event streams is structured in three phases.
First, the predicate is applied at each timestamp to identify members of potential
matching groups, utilizing a parallel index-based approach. The intermediate result
is a predicate graph, where the nodes of the graph refer to moving objects and
edges exist between objects that fulfill the predicate. Second, the predicate graph
is analyzed to identify connected groups regarding the specified pattern and a
sufficiently high number of moving objects. Third, as the incoming event stream
progresses, it is checked whether all the conditions outlined above are satisfied for
the required duration.

Besides efficient processing, our approach allows the tracking of changes in
compositions of groups over several points in time, such that splitting or merging
of groups can be tracked precisely. This goes beyond previous research. The first
experimental results confirm that the processing of our approach is effective and
more efficient than its competitors due to its index-based predicate evaluation.
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3.6 Energy Efficiency and iGPUs

One of the most challenging aspects when dealing with data streams is the
ability to continuously process large amounts of incoming data while meeting
tight latency constraints. In order to offer both, high throughput and low latency,
stream processing engines can benefit from parallelization techniques. Unrelated
data streams can be handled independently by multiple computing units in parallel.
Among the most promising developments for scaling up a single node is the
vast variety of graphics processing units (GPU). However, when dealing with
latency-sensitive stream applications, the transfer time from main memory to
the GPU via PCIe is an ever-prominent limiting factor. Modern hardware using
recent advancements in the Heterogeneous System Architecture (HSA), a platform
specification for heterogeneous computing, makes masking these limitations more
feasible. In particular, integrated GPUs (iGPU) that reside on the same die as
the CPU and can natively access the main memory seem like a natural fit for
accelerating low-latency stream processing applications. The reason is that data does
not have to be shipped to a very size-limited memory on the GPU. In addition, the
advent of so-called signals, which reduce start-up time for GPU kernels, further
increases the potential for low-latency processing in HSA. We developed an event
stream processing system prototype featuring the most common operations such as
filter, aggregation, and joins [39] as well as solutions for pattern matching [40].
This system showcases the potential of using shared-memory CPU-GPUs in a data
stream environment.

3.6.1 HSA Facilities

The following features of HSA are essential to building our prototype.

Memory Management In contrast to traditional programming models, HSA
supports fine-grained shared virtual memory (SVM), allowing all compute devices
to share a unified address space. This feature is especially useful in combination with
iGPUs. Due to a physically unified memory hierarchy, no memory copy operations
are required to ship data to the GPU. In comparison with traditional work patterns on
dedicated GPUs, iGPUs in combination with SVM reduce both, latency introduced
by copying data back and forth, and interaction with the CPU when new data is
available.

Signals HSA provides a signaling mechanism, enabling lightweight communica-
tion between CPUs and GPUs. A signal is a signed integer value that can be
manipulated via runtime functions available on all processing units, allowing them
to atomically manipulate the signal value (e.g., via compare-and-swap, exchange,
etc.). The most interesting feature of signals is that processing units can wait for
value updates, which can be used to implement persistent kernels [41]. Unlike with
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(a) (b)

Fig. 3.6 Event processing on HSA [39]. (a) HSA thread-group hierarchy. (b) Performance of
stream joins on integrated and dedicated GPUs

dispatch-based execution, a persistent kernel is launched once and stays active for
the rest of the application’s lifetime. This HSA feature reduces the overhead of a
kernel launch and, for iGPUs, fully eliminates the need for CPU interaction upon
the arrival of new data.

Communication and Data Exchange Threads in HSA are organized in a hierar-
chy of thread groups similar to traditional GPU programming languages. Figure 3.6a
contains a visualization of this hierarchy. At the lowest level, within a wavefront
consisting of 64 threads, data can be exchanged by swapping register values. Special
primitives provided by HSA, sometimes called vote operations, are used at the
wavefront level, e.g., to reserve slots in an output buffer without serializing the
operation. At the next level, work groups consist of several wavefronts. Data is
exchanged between wavefronts via the size-limited group memory. At the highest
grid level, data is exchanged between work groups via the larger, albeit slower,
global memory.

3.6.2 Operators

Consecutive operators in the system are coupled via specialized lock-free queues.
These queues are implemented as ring buffers backed by contiguous arrays. Because
of SVM, the queues are easily accessible by every compute device. Read/write
indexes are implemented as HSA signals so that updates are properly propagated
across devices. Additionally, producers and consumers can wait for space/data by
waiting for updates on the respective signals.

Filter A filter consumes a single input stream, applies a predicate to every event,
and forwards all qualifying events to the output stream. Since every event is
processed exactly once, parallelism is achieved through batching at the cost of
additional latency. Special care has to be taken to preserve the temporal order of
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output events. Two kernels, a driver-kernel and an eval-kernel, work in tandem,
communicating via signals and shared buffers, to ensure that data is written to the
output queue correctly and efficiently.

Windowed Aggregation The aggregation operator manages a count window of
fixed size over a single input stream. Every time the window is updated (i.e., after
the arrival of one or more events), an aggregation function is applied to the window.
The result is an event with the aggregated value and the timestamp of the most
recent event within the window. The operator is again composed of a driver-kernel
that waits for and then reads data from the input and updates the window with the
new events, triggering re-evaluation of the aggregate if necessary. The eval-kernel
then performs this evaluation via a reduction and propagates the resulting event to
the output queue.

Windowed Joins The join operator consumes two input streams and manages a
count window for each of them. Incoming events on one input are added to the
respective window and probed against the other, using a user-defined predicate. If
two events satisfy the condition, a single output event is created by combining the
payloads and attaching the timestamp of the event that arrived later. A driver-kernel
again waits for data on the two input streams, updates windows, and triggers the
evaluation of the join predicate. The eval-kernel then evaluates the predicate on the
new event and each event in the window of the other input in parallel, writing events
directly to the output queue’s buffer. Eventually, the state of the queue is updated,
making the new events available to the consumer.

Pattern Matching Sequential pattern-matching implementations typically adapt
NFA-based evaluation approaches. For every symbol, there is a state in the
automaton holding a list of partial matches. If a new event, possibly together
with a partial match, fulfills a symbol’s condition, the event is added to the partial
match, and the corresponding transitions are triggered, moving the partial match
to the next state. Our approach [40] performs pattern matching using the CPU and
GPU cooperatively. Partial matches reside in dense arrays in shared memory, and
condition/transition functions are implemented via GPU-kernels. Upon arrival of
a new event, the CPU launches these kernels which then evaluate the conditions
on the new event and all partial matches of each state in parallel. Additionally, the
kernels extend and propagate partial matches to the next state by reserving slots
in the target array using a signal as synchronization. Finally, the CPU materializes
output events for matches that have reached a final state of the automaton and also
performs compaction of the dense arrays to purge them of partial matches that have
not reached a final state within the defined time window.

Our experimental analysis shows that our HSA-enabled implementations using
persistent kernels achieve a reasonable speedup compared to traditional dispatch-
based GPU variants. As an example, Fig. 3.6b shows the speedup of join operation
with varying selectivities on different compute devices. HELLS [42] is a dispatch-
based join, and the baseline is a single-threaded algorithm on the CPU.
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In general, iGPUs are well suited for relieving workload from CPU cores, and the
corresponding implementations outperform even multi-threaded CPU implementa-
tions in many cases. However, it also shows that dedicated GPUs are not suitable
for a tuple-at-time or micro-batch processing scheme, due to the additional cost of
shipping data to the device over PCIe.

3.6.3 Energy Efficiency

The rising importance of energy consumption due to environmental and cost-
efficiency reasons [43] has significantly increased awareness of energy efficiency. A
vision paper in 2008 [44] laid out multiple challenges for database servers, including
energy-aware query optimization, buffer techniques, physical design, and hardware.

3.6.3.1 iGPUs

Integrated GPUs, due to being designed for the low energy constraints of mobile
devices, are obvious candidates for such optimizations. Our experimental analysis
showed that, for many operations, stream operations on iGPUs not only process data
faster (i.e., provide a higher throughput) than, e.g., multithreaded algorithms on the
CPU, but also consume less energy. If, however, input rates are slow, single-threaded
algorithms on the CPU are generally more efficient, in particular, if dynamic voltage
frequency scaling is used to throttle down the CPU. This indicates that there are
ample opportunities for optimization. An energy-aware scheduler should, based on
user-defined latency constraints and a given energy budget, assign processing tasks
to the best-suited processing unit. However, our goal of building this scheduler
using our HSA-based iGPU algorithms could not be achieved. This was because
ROCr/ROCm, the HSA runtime provided by AMD, does not officially support
integrated GPUs and general instability made continuing development of this project
impossible. We considered processors with integrated GPUs from Intel and Apple
as alternatives; however, both options require a complete rewrite of our system as
neither supports HSA.

3.6.3.2 Mobile Devices

We also developed a multi-modal CEP framework for mobile devices [33]. A key
idea is to use Berkeley Packet Filters (BPF) to perform some filter operations in an
energy-efficient manner. The framework allows query executions in user space (user
mode), in the operating system (kernel mode), on the Wi-Fi chip (Wi-Fi mode),
and/or on a sensor hub (hub mode). The framework was included as a bridge to
JEPC framework (without the support for pattern matching) such that different
operators may be executed using our native processing algorithms while others can
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Fig. 3.7 Evaluation of energy consumption in CEP. (a) Energy consumption of a pattern-matching
operation with the single-threaded CPU variant as a baseline. (b) Power consumption of filter and
aggregation queries in mobile devices using user and kernel mode while processing events

leverage the mobile device frameworks. Our approach allows aggressively placing
operators within the overall query graph onto lower-powered chips or into kernel
mode, leaving a smaller number of operators for the more energy-hungry user-mode
execution. Such a placement strategy results in significant improvements in terms
of energy consumption and throughput.

3.6.3.3 Evaluation

Figure 3.7 shows the experimental evaluation of both approaches. Figure 3.7a shows
the evaluation of a pattern matching operation using three different implementa-
tions, two on a CPU and one on the integrated GPU. The pattern is of the form AB,
where A is true and B is very unlikely, resulting in an extremely large number of
partial matches. As the window size increases, the operation on the integrated GPU
can increasingly exploit parallelity and consumes only a fraction of the energy of
the CPU variants over the full operation. Figure 3.7b shows an excerpt from the
evaluation of our multi-modal CEP framework for mobile devices. The experiments
were performed on the Dragonboard 410c SoC. We vary the throughput of events
and measure the power consumption of different strategies. The benchmark to
determine a baseline is obtained from a one-byte write to an in-memory character
device (/dev/null), which basically is a single system call and an in-memory
write. We compare kernel mode and user mode execution of filter operators. Clearly,
executing in kernel mode shows significant improvements in terms of energy
consumption. Details on the experimental setup and other experiments for the multi-
modal CEP framework can be found in the full publication [33].
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3.7 Compression

The input data model for our system offers event streams with a schema to support
multiple different measurements per timestamp. For efficient storage, data has
to be compressed, and due to temporal correlation, event database systems such
as ChronicleDB already use various compression techniques to reduce storage
requirements. However, compression can also be leveraged for query processing.
Sort-based query methods are prominent in most operations in almost every system.
For example, ChronicleDB applies sorting to restore the temporal order in case
of out-of-order data. In addition, range predicate evaluation for pattern matching
requires a sorted index on a multi-columnar key that considers the attribute,
the timestamp, and the sequence number within the event stream. Similar sort
requirements exist for situation and group predicates. For this reason, we evaluated
a solution for compression strategies that enable sort-based operations and found
the integration of offset-value coding into our system as a promising solution.

Offset-value coding [45] is a technique closely related to prefix truncation on
multi-columnar keys in database rows or strings. In a sorted stream of data, the index
of the column within the key, at which a row differs from its preceding row, is folded
with the value in this column into the ascending offset-value code using the formula
(arity − index)×domain+value. Here, arity is the number of key columns, and
domain is a number higher than each domain of each key column, assuming integer
values. Two rows with offset-value codes with respect to the same, smaller base row
can now be compared efficiently: a smaller offset-value code indicates that the row
shares a longer prefix with the base row, or both rows share the same prefix, but one
has a smaller value at the next column. In both cases, the row with the smaller code
sorts earlier than the other row. If the offset-value codes coincide, additional column
comparisons are performed, beginning at the key column following the encoded
offset. Duplicate rows are encoded with the special offset-value code 0, which arises
by inserting arity for the index and a value of 0 into the formula, thereby making
duplicate detection trivial.

The comparison logic shows the two main benefits of offset-value coding. First,
they function as surrogate keys similar to hash values, reducing many would-be
column comparisons when comparing two rows into a single, fast integer com-
parison. Second, offset-value codes are a means of caching previous comparisons.
If a comparison is not immediately decided by offset-value codes, the known
shared prefix of two rows is not compared again. Additionally, the offset-value
code of the larger row can be adjusted during the actual comparison so that the
lower row becomes the new base row. This is essential for all merge-based sort
operations using offset-value codes. Reducing the number of column comparisons
performed is particularly valuable if, as is the case in many database systems,
these comparisons are interpreted and thus substantially more expensive than simple
integer comparisons.

Offset-value coding can vastly improve the performance of sort-based operations
in database systems such as aggregation and duplicate removal but also joins [46].
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Utilizing and maintaining offset-value codes across operator pipelines is invaluable
for sort-based query execution [47]. An operator should not only use existing
offset-value codes in sorted input but also produce sorted output with offset-value
codes. Moreover, storage engines should provide facilities to either store sorted data
together with offset-value codes, e.g., in B-trees with prefix truncation, or make
deriving them possible, as is the case with run-length encoding in column stores.

3.8 Applications

The overall architecture works well in any event processing scenario but can
showcase its particular strengths in applications that require live event stream
processing, long-term storage, pattern matching, and a large amount of data. We
successfully used the system in multiple application scenarios with varying degrees
of complexity, such as part of a data pipeline for analysis of cryogenics data,
movement data, and flight data.

The most challenging use cases are usually spatiotemporal applications featuring
multiple sensors. While our event processing system has both spatial and temporal
processing capabilities, the application scenarios usually have a visual component
and require a combination of data types (such as combining vector and raster
data) that are not natively supported in event processing systems. For this purpose,
we built a processing pipeline [48, 49] that connects our architecture with the
Visualization, Analysis and Transformation (VAT) System [50, 51]. VAT is an
interactive spatiotemporal processing platform consisting of a processing backend
and a Web-based frontend. We will briefly highlight challenges and opportunities
faced in application scenarios with this pipeline in a flight data use case.

Flight data as provided by the OpenSky Network [52] feature a lot of the
characteristics described above. Due to the large number and variety of airplanes
as well as high-frequency updates, there is a plethora of movement (landing,
starting, evasion) and group patterns (airplanes closing in on each other) that
can be continuously monitored with CEP to avoid potential catastrophes like
collisions. However, tuning the parameters of a CEP query to deliver the desired
results is challenging and typically requires a combination of domain expertise and
historical data analysis. Furthermore, in many cases, pure CEP queries need to be
combined with additional data sources (e.g., remote sensing images) and processing
technologies (e.g., machine learning models). To alleviate some of those challenges,
our pipeline utilizes an often-overlooked key characteristic for data analysis that
flight data exhibits: It can be visualized in a system like VAT.

Figure 3.8 shows multiple flight trajectories approaching the Frankfurt airport.
Black lines show all flight trajectories. We used pattern-matching queries similar
to Listing 3.1 to identify starting (green) and landing (red) trajectories. Parameter
tuning for these queries is not straightforward, as finding good thresholds for
both range and delta predicates requires some work on data in long-term storage.
The combination of VAT and ChronicleDB simplifies this process as ChronicleDB
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Fig. 3.8 Visual
pattern-matching queries for
flight starting and landing
patterns [48]

features efficient access and processing capabilities for CEP queries that allow for
fast, interactive feedback through VAT.

In this context, we also analyzed opportunities for detecting flights in severe
weather conditions by combining data from ChronicleDB with raster data and the
analysis of group pattern queries [48]. Furthermore, we introduced a component
for performing multi-query optimizations and introduced an extrapolation operator
for JEPC to enrich events [49]. All these queries can leverage some of the overall
research contributions mentioned before.

3.9 Conclusion and Outlook

Event processing systems evaluate continuous queries over an endless stream of
events. A modern holistic event processing architecture requires an approach that
combines continuous queries with a long-term event storage system that allows
for fast ingestion and efficient analytical ad hoc queries. We presented our system
that combines an event processing solution (JEPC) and an efficient event store
(ChronicleDB) with the same query semantics. We used modern hardware in
each component to speed up both types of queries. In particular, we proposed
solutions for iGPU-based processing using JEPC semantics that can accelerate
continuous queries in an energy-efficient manner. Furthermore, we used novel
indexing techniques and query strategies in ChronicleDB. For each component, we
developed new strategies to process queries like sequential, situation, and group
pattern queries.

There are many new research directions within such a holistic approach. For
pattern matching, our solutions can be further enhanced with a comprehensive cost
model for various strategies. Our research on group pattern queries can further be
extended with hardware-acceleration strategies such as iGPUs. Since large amounts
of event data usually showcase correlation and are compressed in event stores such
as ChronicleDB, we will further explore the use of offset-value codes within event
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stream applications. In particular, the use of hardware accelerators for offset-value
codes is a promising direction for new research.
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Chapter 4
Hybrid Transactional/Analytical Graph
Processing in Modern Memory
Hierarchies

Alexander Baumstark , Muhammad Attahir Jibril ,
and Kai-Uwe Sattler

Abstract Today’s enterprise computing architectures are characterized by a com-
plex memory hierarchy: different application requirements in terms of latency,
bandwidth, persistence, and access pattern, as well as characteristics of available
memory and storage technology require combining different technologies. Building
highly efficient data management and analytics solutions that meet the challenges
of modern applications requires to utilize this memory hierarchy, i.e., taking the
specific characteristics of a given technology into account and keeping data objects
in the optimal level. In this paper, we present results of our project on exploiting
modern memory hierarchies in support of hybrid transactional/analytical processing
(HTAP) on graph data. First, we discuss the design and evaluation of data structures
and query operations for graph data in persistent memory. Second, we present
an approach to support the analysis of graph data on GPU-based accelerators
with dedicated memory by efficient data transfer and consistency mechanisms.
Finally, we propose a storage and processing strategy for (bi-)temporal graphs using
temporal materialized views while exploiting the memory hierarchy.

4.1 Introduction

Today’s enterprise computing architectures are characterized by a complex memory
hierarchy: the different application requirements in terms of latency, bandwidth,
persistence, and access pattern, as well as the characteristics of available memory
and storage technology required to combine different technologies. In the past, such
hierarchies could be classified into a few levels with one technology at each level
(e.g., CPU cache, DRAM as primary storage, magnetic disks as secondary storage,
tapes); the hardware development of the last years has broadened the memory and
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storage landscape. Modern multi-core CPUs provide at least three cache levels
(L1–L3); with the advent of persistent memory, primary storage is not restricted to
volatile DRAM anymore, and solid-state disks (SSD) connected via PCIe (NVMe)
outperform traditional hard disks by an order of magnitude. Furthermore, some
architectures such as GPUs or even CPUs provide in addition to standard DRAM
so-called High Bandwidth Memory (HBM). In addition, co-processing units like
GPUs introduce their device memory to the overall hierarchy.

Building highly efficient data management and analytics solutions that meet
the challenges of modern applications requires the utilization of the memory
hierarchy, e.g., by using inclusive and exclusive caching strategies, taking the
specific characteristics of a given memory technology into account for designing
data structures or algorithms, or by keeping data objects in the optimal level, in the
optimal memory region, and in the optimal data structure. Particularly, trends such
as HTAP—Hybrid transactional/analytical processing—aiming at a combination of
OLTP (transaction processing) and OLAP (analytics) in a common architecture to
be efficient both for operational and analytical workloads pose a great challenge in
exploiting the memory hierarchy.

An interesting addition to the traditional memory hierarchy is non-volatile
memory or persistent memory (PMem), which—ideally—combines the best of two
worlds: persistency of block devices with byte-level access granularity and low
latency of DRAM. Based on the 3D XPoint technology, Intel started to ship Optane
DC persistent memory modules (DCPMM) as the first non-volatile memory DIMMs
in 2019 but discontinued the product in 2022. Despite this fact and the lack of a
commercially available product, PMem poses some interesting aspects that affect
the design of future data management solutions.

In this work, we investigate how we can effectively exploit the modern memory
hierarchy and particularly the opportunities of persistent memory. Based on an
analysis of the characteristics of Optane DCPMM and approaches to integrating
PMem into the memory hierarchy, we discuss design decisions for PMem-based
data structures and storage engines.

Our work is centered around Poseidon, a hybrid transactional/analytical pro-
cessing (HTAP) graph database system that enables transactional graph processing
based on the property graph model. Graph databases represent an important class of
NoSQL systems. They come in a broad range of usage cases and approaches, rang-
ing from systems for analyzing large graphs over systems for querying knowledge
bases to transactional systems with support for navigational queries. Depending
on the primary use case, the underlying data model is either based on a property
graph model, represents a graph by RDF triples, or maps the graph to relational
tables. Also, the processing models range from standard database query processing
to dedicated parallel programming models such as the bulk synchronous parallel
(BSP) model. Most available systems follow the typical architectures of database
systems like traditional disk-based architecture, in-memory architecture, or scalable,
distributed solutions. Thus, graph data are either stored in disk-based data structures
or loaded into memory for processing. However, the nature of graph processing,
e.g., traversals along relationships between nodes, makes it a promising use case for
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byte-addressable storage eliminating the need for transferring data between external
block storage and memory.

Our work has the following main contributions:

1. We provide a system beyond the scope of standard relational or record-based
data models by supporting graph data, both in the form of transactional updates
and graph analytics to realize HTAP for graph data. Primarily, we focus on
utilizing PMem for storing graph data and the interplay with volatile memory
for transaction processing.

2. In addition to PMem, we consider further elements of the memory hierarchy
such as device memory and high bandwidth memory as part of GPU devices for
specific analytical tasks.

3. Due to the nature of evolving graphs in topology and properties, we extend the
standard data model to capture time-varying information for future processing.
However, this leads to higher storage and processing requirements due to more
data. Exploiting the modern memory and storage hierarchy can significantly
improve the overall processing.

4.2 Background

In the following we provide an overview of the main characteristics of persistent
memory technology as well as of the fundamental assumptions regarding the data
model underlying our work.

4.2.1 Persistent Memory Characteristics

In our work, we rely on Intel’s Optane DCPMM as the only commercially available
DIMM-packaged persistent memory. Though the basic principles of our work can
be applied to other potential PMem technologies, we have designed our approach
around the special characteristics of Optane DCPMM. What makes persistent
memory in general interesting is the byte-addressability and direct persistence at
DRAM speed. On modern CPU architectures, byte-addressability corresponds to
cache-line granularity (typically 64 bytes). Further interesting features are a higher
density and better economic characteristics than DRAM (both in monetary and
energy terms) as well as direct load and store semantics. Another important fact
is that the Optane devices internally work with cache lines, but a write-combining
buffer aggregate writes to 256-byte blocks (cf. [66]). This is mainly to avoid write-
amplification, although we could not notice a significant performance difference
when switching from 64-byte to 256-byte aligned data structures.

Table 4.1 summarizes some of the characteristics and compares them with
those of DRAM and SLC NAND flash. We remeasured the latencies using Intel’s
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Table 4.1 Main characteristics of different memory/storage technologies (cf. [24])

DRAM Optane DC NAND Flash

Idle read latency 80 ns 175 ns 15 μs

Loaded random latency 90 ns 325 ns 200 μs

Read bandwidth 85 GB/s 32 GB/s 3 GB/s

Write bandwidth 46 GB/s 13 GB/s 0.6 GB/s

Write endurance >1015 N/A 104–105

Density 1× 2–4× 4–8×

Memory Latency Checker [31] and Flexible I/O tester [20]. Since we focus on
single-threaded experiments, total bandwidth numbers are not relevant for us
here. Similar to flash, PMem exhibits a read-write asymmetry and lower write
endurance than DRAM. However, we could not find any actual endurance data
of the DCPMMs. When designing new data structures, these properties mean
that writes should be minimized using more computing power instead. DCPMMs
provide two possible operating modes: Memory and App Direct mode. The Memory
mode allows applications to use DCPMMs as an extension to volatile memory,
where DRAM acts like a kind of L4 cache. For that, no rewrite of in-memory
software is necessary. However, to fully utilize PMem and its persistence, the App
Direct mode must be used. Therefore, developers have to take care of persistence,
failure-atomicity, performance, and others themselves. On the software level, we
used the de facto standard Persistent Memory Development Kit (PMDK) [32] that
provides functionality to manage PMem including allocations, transactions, object
management, etc.

From our experiments and the work of other researchers, we can derive the
following main characteristics of PMem (cf. also [34]):

(C1) PMem has a higher latency and lower bandwidth than DRAM (3x read
latency).

(C2) Reads and writes on PMem behave asymmetrically.
(C3) DCPMMs internally work on 256-byte blocks, which means read operations

benefit when a multiple of the block size is used [66, 70].
(C4) Failure atomicity is only guaranteed for 8-byte aligned writes; anything larger

has to be implemented in software.
(C5) PMem allocations are expensive [24, 25, 45].
(C6) Dereferencing persistent pointers (a 16-byte structure consisting of a pool

identifier and an offset in this pool) can prevent optimizations.

Considering these characteristics, a system using PMem has to be designed in a way
that negative impacts of the hardware are minimized.
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4.2.2 Property Graph Model

In the following, we assume a property graph model as the data model where a
graph G = (N,R) consists of nodes N and directed relationships R ⊆ N × N .
Each node n ∈ N is identified by a unique identifier id : N → ID. Furthermore, a
label (used, e.g., as a type descriptor) is assigned to each node and each relationship
via a labeling function l : {N ∪ R} → L where L is the set of labels.

To each node and relationship, a set of properties can be associated via p :
{N ∪ R} → P(P ) where P(P ) denotes the power set of P . Such properties are
represented as key-value pairs (k, v) ∈ P with P = K × D where K denotes the
set of property keys and D is the set of possible values including numbers, strings,
etc.

Property graphs are supported by several graph database systems, and even RDF
data can be mapped to property graphs [3]. Furthermore, the new SQL standard
SQL:2023 (ISO standard ISO/IEC 9075-16) adds also support for property graphs.

4.2.3 Temporal Graphs

In transactional graph databases, the managed graphs change, leading to a structural
transformation of the graph over time with various states. Each of such update
operations creates a new state of the underlying graph. Analyzing these different
states over time can be valuable for analysis, facilitating future business decisions
through the identification of patterns or the training of models. The time dimension
is an already known feature in modern DBMSs, which are referred to as temporal
DBMS. While a traditional DBMS does not preserve the old state of the data before
updates, a temporal DBMS invalidates the old data and creates new valid data. The
support for temporal features in SQL was introduced with the SQL:2011 standard,
enabling the processing of evolving data through temporal query operators [42].
However, current graph database systems lack efficient support for the storage and
processing of temporal data.

For our purpose, we extend the above-introduced property graph model with
additional time information as properties on the nodes and relationships. Storing
additional time information describes historical changes in the graph structure itself
and the changes in the corresponding properties. This time dimension is often
referred to as the real-world or valid time interval of a record, which indicates the
start and end time point when the object was available. A user can define these
periods, by adding them directly to the records. However, considering a transactional
database reveals a discrepancy between the valid time defined by the user and
the actual time when the changes are committed and are visible by the system.
Therefore, an additional time dimension is necessary to retrieve the transactional
time of the tuples. Furthermore, we extend the model by the transaction time
interval, which is the interval when a transaction started processing the record and
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the time when the transaction committed the changes to the DBMS. Storing two
different time dimensions allows processing the historical changes in a graph at a
certain time point concerning the state when the changes take place. Providing these
two dimensions of times in a system enables the processing of bi-temporal queries
in a graph database.

Let Ttx be the transaction-time domain and Tv the valid time domain. An event
in one of the domains ti ∈ Ttx ∪ Tv is an interval (tbegin, tend) where tbegin marks the
beginning time of the event and tend the end time of the event. Events in the time
domains Ttx and Tv are linearly ordered so that ti < ti+1 where ti ∈ Ttx ∪ Tv .

Then, we extend a node n ∈ N to be a tuple (id, ttx, tv), where id is a unique
identifier to identify a node using id : N → ID and ttx and tv are time intervals
denoting the validity of the node considering the time domains Ttx and Tv . A
relationship r ∈ R is a tuple (id, ttx, tv), where id is a unique identifier to identify
a relationship using id : R → ID and ttx and tv are time intervals denoting the
validity of the relationship wrt. the time domains Ttx and Tv .

Considering the structure of a graph, it should be noted that the graph is only
valid in a certain time interval when all nodes and relationships are also valid. A
relationship is only valid when both the source and destination node are valid in the
appropriate time domain. In contrast to the model used in other systems, this model
restricts multiple nodes with the same identifier in the same graph. Dropping this
constraint relaxes the model definition and has the advantage of improving the query
processing, as the storage of a graph contains only valid nodes and relationships.

4.3 Data Structures for Transactional Graph Data in PMem

The characteristics of PMem and the performance consequences require a careful
design of data structures for persistent data. Based on the main goals, we describe
in the following our design decisions for graph structures.

4.3.1 Design Goals

Based on the observations of PMem characteristics listed in Sect. 4.2.1, we can
derive several goals when designing data structures for PMem [34]:

(DG1) Algorithmically save writes (C1 & C2). The idea is to reduce the number
of writes by trading them off for more reads.

(DG2) Opt for a DRAM/PMem hybrid storage design (C1 & C2). It has been
shown that a pure PMem-only architecture causes too much performance
degradation compared to its DRAM counterpart [24, 25].

(DG3) Optimize the access granularity to 256 bytes (C3). The data structures
should be aligned to cache lines.
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(DG4) Prefer failure-atomic writes over logging or shadowing (C4). For this
purpose, flushing of cache lines via the clwb (cache line write back)
instruction and barriers such as sfence (store fence) have to be used.

(DG5) Use group allocations and reuse blocks of memory instead of deallocat-
ing (C5). Not every new record in a system should be associated with an
allocation.

(DG6) Avoid dereferencing of persistent pointers (C6). Persistent pointers
should preferably only be used during application (re)start for initialization.
In addition, pointer chasing should be avoided as well, as shown in [24, 25].

Based on the idea of a periodic table of data structures [30], we worked already on
the evaluation of the design space [24] where we presented a set of design primitives
and micro-operations for PMem-based data structures. A design primitive is a layout
for a data structure. This helps identify bottlenecks and optimization potential of
micro-operations. Examples are data node layouts in index trees and the actual
search for a key within a tree node.

4.3.2 Data Structures for Graphs

Sticking to the outlined design objectives for update-optimized property graph
management led to crucial design choices. Fundamentally, nodes and relationships
are kept in distinct tables. Given the absence of fixed schemas for nodes and
relationships and the variability in property sets, all nodes and relationships are
each consolidated into their respective single tables. Figure 4.1 gives an overview
of Poseidon’s storage architecture. Poseidon is based on the following design
decisions:

• Tables are managed as linked lists of chunks. A chunk is a fixed-sized array
(cache-line aligned and a multiple of 256 bytes) of records.

• Records in a chunk are of the same type (nodes, relationships, properties) and
equally sized. Access to individual records is addressed via their offsets.
Further, a sparse index is used as a persistent lookup table for efficient access
to chunks based on record offsets (DG1, DG6).

• Properties are outsourced to a separate table to fulfill equally sized records.
Further, all variable-length values (e.g., strings) are dictionary encoded. This
leads to a reduced number of write operations (DG1).

• The connections between nodes and their relationships and between nodes and
relationships and their properties are represented via offsets.

• Storage model is designed hybrid for secondary indexes and for transaction
management (DG2).

The data structure and algorithms are implemented using Intel’s PMDK library
for persistent memory [32].
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Fig. 4.1 Graph data structures

For HTAP workload support, a high-performance concurrency control protocol is
required. Based on related work [58, 68], we decided to implement a multi-version
concurrency control (MVCC) as it exhibits higher concurrency than their single-
version counterparts. With this protocol, transactions can be concurrently executed
on different versions of the same object increasing the overall throughput, especially
for long-running transactions and high contention [43]. With this, modern multiple
CPUs can be effectively leveraged.

We adopted and implemented the Multi-version Timestamp Ordering (MVTO)
protocol to the specifics of PMem. The main idea, as described in [34], is to
extend node and relationship records by additional persistent fields—txn-id, begin
timestamp bts, end timestamp ets, and read timestamp rts—and a volatile field,
pointer. The txn-id field is used for write locking using a CaS instruction [43].
Validity for objects is marked with the begin and end timestamps for access by
a read transaction. The read timestamp indicates the latest read by a transaction.
The pointer field stores a volatile pointer to a list of dirty objects in DRAM to
address (DG1) and (DG2). Thus, all updates are performed on the DRAM record
version until the commit. Keeping uncommitted data in volatile memory minimized
the number of weird to PMem, whose access is more costly than on DRAM. Only
the final version needs to be written on PMem during the commit. Volatile versions
can be dropped effectively.
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To manage variable-length labels, property keys, and values efficiently, a dic-
tionary compresses strings, reducing space and writing overhead while maintaining
offset-addressable records. This also accelerates operations like filters by comparing
codes instead of strings. The dictionary has a persistent string pool in a large
array for storing strings successively, using string offsets as dictionary codes. A
volatile memory hash table, rebuilt at startup, maps strings to codes, enabling quick
bi-directional translation. The dictionary is separate from the storage structures,
optimizing performance and storage.

Lookup queries can benefit from secondary indexes since full table scans are too
expensive. To accelerate these queries, we additionally provide B+-Tree indexes.
Indexes can be constructed for record labels or properties. The values of these
properties are used as keys in the index. Secondary indexes can be constructed at
DBMS startup or rebuilt in the event of a failure. Therefore, there is no complete
persistence required. We adopted a hybrid DRAM/PMem approach to provide a
good compromise between recovery and query performance, similar to [37, 55, 69].
Leaf nodes are stored in PMem while inner nodes in DRAM. Inner nodes of the tree
can be rebuilt from the persistently stored leaf nodes in PMem. Further, this results
in only one PMem-resident node needing to be read per lookup, which reduces
recovery time. Following DG3, all nodes on PMem are cache-line-aligned and have
a multiple of 256 bytes.

4.4 Graph Query Processing

The higher latency and lower bandwidth of PMem impact query processing directly.
However, the advantage of PMem is the byte-addressable access allowing in-
memory-like access to storage, which is especially useful for graph DBMSs. Still,
the characteristics require careful consideration for designing the query engine.

4.4.1 Push-Based Approach

We address the PMem characteristics by providing a push-based query engine
that leverages multithreaded processing. First, we provide a set of graph-specific
operators, which we adapt from a graph algebra [27]. This algebra extends the
relational algebra by navigational operators for graphs such as NodeScan or
Expand. We split the Expand operator to also address relationship directly into a
further ForeachRelationship operator [34]. An index to access particular nodes
and relationships can be used with the IndexScan operator.

We design the query engine as a push-based engine as shown in Fig. 4.2, where
tuples are passed from one operator to another until a pipeline breaker is reached. A
pipeline-breaker is an operator that materializes the tuples for further calculation or
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Fig. 4.2 Query execution plan

printing. Further, we leverage a Morsel-driven approach [44]. We execute a query
plan on individual chunks (the Morsels) on different threads and merge results at
pipeline breakers. For this, we implement a task-based approach, where chunks are
assigned to a task and pushed into a task pool where they will be pulled from threads
and executed. Every operator is implemented as an ahead-of-time (AOT)-compiled
query engine, which we use as an interpreter. When a query arrives, the individual
operators are linked into a cascade of operator functions and executed.

For convenience, Poseidon also supports the Match operator from the Cypher
query language, which is rewritten in a sequence of NodeScan or IndexScan
and ForeachRelationship operators. Query 4.1 shows an example of Poseidon’s
query language using query 10 of the GTPC benchmark [36].

1

2 Sort([$5:double ASC],
3 GroupBy([$0.id:uint64, $0.last:string, $0.city:string, $0.phone

:string, $6.name:string], [sum($4.amount:double)],
4 Expand(OUT, 'Nation',
5 ForeachRelationship(FROM, 'isLocatedIn', $0,
6 Filter($2.entry_d:datetime >= pb::to_datetime('2007-01-02

00:00:00.000000')
7 $2.entry_d:datetime <= $4.delivery_d:datetime,
8 Match((c:Customer)-[:hasPlaced]->(o:Order)-[:contains]->(

ol:OrderLine))
9 )))))

Query 4.1 Query 10 of GTPC in Poseidon notation
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4.4.2 Just-in-Time Query Compilation

We use query compilation to mitigate the higher access latencies of PMem. Graph
queries can be perfectly optimized since the emitted (unoptimized) code contains
similar patterns and the same function calls, which usually increase the execution
overhead. For short-running queries, the problem is the compilation time itself since
it can be longer than the actual query execution time. For this, we use an adaptive
approach, similar to [41]. The query engine starts every query in an interpretation
mode, which uses an interpreter for query execution and compiles the query in
the background. As soon as the compilation is complete, the engine switches to
the optimized code. Access latencies for underlying memory are effectively hidden
since more data can be executed using the optimized code [9].

We use the LLVM framework as the just-in-time (JIT) compiler to generate code
on runtime. Using this framework allows to generate an intermediate representation
(IR) from given queries and executing hardware-independent code optimization.

We transfer every algebra operator into an IR code to compile it into a single
function. Internally, this is achieved by using the visitor code pattern. Every algebra
operator in IR starts with a basic block that contains the first initialization and
branching to the next operator-specific code. Further, each operator ends with a
basic block that contains the link to the next operator, since the operators are push-
based. In between these two blocks is the operator-specific code. Ultimately, this
forms a chain of operators. The IR code can then be optimized and compiled JIT.

4.4.3 Adaptive Query Compilation

For the adaptive approach, we start executing the interpreter on the given graph
query in graph algebra. For this, every chunk will be assigned to a task, which will
be pushed into a task pool. A task contains a chunk and the query function that
points to the interpreter initially. Participating threads work on the task pool by
polling tasks from it and executing the function on the chunks given in the task. The
query interpreter uses ahead-of-time compiled code, which uses a function cascade
of the operators in the given query to interpret the code. In the meanwhile, the query
compilation process starts. As soon as the compilation is complete, a thread switches
the code of the tasks in the task pool. When the next task is pulled from a thread, it
will execute the freshly optimized and compiled code.

When comparing interpretation and the adaptive approach, the adaptive approach
can hide the PMem latencies more effectively. Since more tasks are executed
with the optimized machine code, the runtimes can be decreased, which hides the
latencies of PMem.
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4.4.4 Query Recovery

PMem offers opportunities for efficient, near-instant query recovery. The challenge
remains to manage intermediate results and query states in PMem without incurring
significant latency and slowing down processing when tracking states. We utilize a
chunked vector for holding temporary data and query checkpoints. Tuple elements
are separated and stored in a specialized structure, focusing only on node and
relationship identifiers to minimize memory usage. Property elements are stored
by their record ID. This structure encapsulates element details, such as identifiers
or property keys, and aligns with design choices at 256-byte multiples. Elements
are interconnected through offsets within the chunked vector, facilitating element
association. We leverage the push-based query engine of Poseidon. By persisting the
last processed chunk vector position in a map, we can restart from these checkpoints.
We initiate iterator objects for incomplete chunks from the last saved position,
enabling the continuation and recovery of the failed query for further processing.
Because of the rebuilding costs of intermediate results, we use a cost model that
calculates the costs for rebuilding the intermediate results to continue or restart the
query from the beginning [8].

4.5 Graph Analytics on Transactional Data

Support for HTAP workload means, in addition to transactional updates and queries,
also supporting complex graph analytics tasks (e.g., pathfinding, centrality analysis,
etc.) on the same dataset and, at the same time, ensuring the freshness of the
results. Experiments have shown that hardware accelerators such as GPUs deliver
significant performance benefits when processing analytical tasks on graphs.

This has led to the development of several GPU-based graph analytics frame-
works that facilitate the leveraging of GPUs’ parallelization potential for executing
operations on graphs. However, these graph analytics frameworks rely on dedicated
data structures and graph representations (e.g., based on adjacency lists or matrices),
which are not well suited for efficient transactional updates on parts of the graph.
Consequently, one is left with two options. The first option is to not utilize GPU
for performance benefits in the analytical part of the workload, thereby accepting
performance losses. The second option is to store the graph in two different
representations, which ultimately raises the problem of update propagation.

4.5.1 Data Structures for Graph Analytics

To address this task, we have extended Poseidon to a hybrid architecture. For this
purpose, we use the Compressed Sparse Row (CSR) format, which is the most
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Fig. 4.3 Sample graph

Fig. 4.4 CSR Representation
of sample graph

commonly used sparse matrix format [26] for graph representation on GPU. The
CSR data is managed as a replica of the main graph representation in persistent
memory (PMem), although the two are in different formats. Therefore, updates on
the main graph representation that are made by transactions have to be propagated
to the GPU part to execute the analytics on the most recent version of the graph.
However, the CSR format inherently makes updates on the graph difficult because
of its highly compact layout.

A CSR is a data structure that stores an adjacency matrix. An adjacency matrix,
M ∈ {0, w}n,n, is a matrix representation of a graph topology. Each relationship
(or edge) in the graph is represented by an entry w at a coordinate (u, v) in M ,
where u and v are the source and destination nodes (or vertices) of the relationship,
respectively, and w is the relationship weight. Entries with weight value 0 denote
unconnected nodes. A CSR essentially provides information regarding the non-zero
entries in M , linearized in three one-dimensional arrays. The edge values array
stores the non-zero weight values (i.e., all w for each u in M), the column indices
array stores the column indices of the values (i.e., all v for each u in M), and the
row offsets stores the offsets of the values (in the first two arrays) for each row (i.e.,
u in M). Figure 4.3 shows an example graph along with its CSR representation in
Fig. 4.4.

CSR and other static data structures compactly represent graph data, in addition
to contiguous storage. These have advantages such as reduced memory consump-
tion, regular memory access, and low interconnect bandwidth consumption when
transferring data between the host and the GPU device. However, these data
structures are not suitable for updates. Thus, the default way to handle updates
is a complete rebuild of the data structures when the graph data changes. In the
beginning, the CSR would have to be completely built. However, for subsequent
modifications to the graph data, the CSR would have to be repetitively rebuilt. Doing
this on an HTAP graph system so that graph analytics run on the most recently
committed snapshot of the graph data eventually counterbalances the benefits of
using GPU for accelerated analytics in the first place. As a solution to this high
cost of CSR rebuild, we adopt a graph-based delta approach, where each delta is
associated with an updated node in the graph and it represents the new state of the
adjacency list. In addition to committing the updates it made to the main graph,
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every transaction stores deltas for its updates in a delta store at commit time. Before
executing analytics, the delta store is first scanned for these deltas, and the deltas are
merged to update the CSR so that the analytics execution is on the latest committed
snapshot of the graph in a format different from the main graph storage and by
the freshness requirements of HTAP. Our solution mainly consists of three steps,
(1) Delta Append, (2) Delta Scan, and (3) Delta Merge, , which we describe in the
following.

Delta Append Figure 4.5 depicts our delta approach. At commit time, which is
denoted by the first vertical dashed line in the figure, each transaction appends deltas
into the delta store for the new states of the adjacency lists that changed as a result
of the updates it has made to the main graph. This appending of deltas is done in
addition to persisting updates to the main graph. At the arrival of analytics, which
is denoted by the second vertical dashed line in the figure, the deltas are merged to
update the CSR so that the analytics are executed on a CSR representation of the
most recently committed snapshot of the main graph. We identify which update
operations modify the arrays of a CSR: the creation and deletion of nodes and
relationships. To map each delta to a node, we associate each of these operations
with the updated node(s). About the addition and deletion of a relationship, we map
the delta to only the source node of the relationship (in a directed graph) or both
the source and destination nodes of the relationship (in an undirected graph). As for
the addition and deletion of a node, we map the delta to the added or deleted node.
We also store corresponding deltas for any addition or deletion of relationships that
accompany the addition or deletion of a node. At commit time, a transaction stores
a delta for each of these mapped nodes, where a delta consists of the ID of the node,
its current column indices, and the corresponding edge values. To ensure that the
main graph and its CSR representation are consistent under transactional updates,
each transaction additionally stores, in each of its deltas, (i) its timestamp and (ii) a
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flag to indicate whether the delta has been previously used to update the CSR or not
(each delta is used only once in a CSR update).

Delta Scan Updating the CSR with the transactional modifications since the last
CSR update (or since the initial CSR build) requires scanning the delta store to
retrieve the deltas. The delta scan begins with the launching of a special transaction
Ts. But while Ts is scanning the delta store, regular update transactions would
continue to store their respective deltas in the delta store at their respective commit
times. To guarantee data consistency, Ts conducts a visibility check on each delta,
based on the transaction timestamps stored in the deltas as an extension of the
underlying MVTO in Poseidon. The CSR update itself is done transactionally.
Therefore, all the deltas (denoted by the green triangles in Fig. 4.5) that are visible
to the transaction Ts executing the CSR update operation and have not been used
in a previous CSR update are merged to update the CSR, thus reflecting the latest
committed snapshot of the main PMem graph data. All the deltas (denoted by the
red triangles in Fig. 4.5) that have been used in a CSR update are marked using the
flag mentioned earlier.

Delta Merge For regular update transactions (not Ts above) T0, T1, ... Tn that
store deltas after a CSR update, each delta stored by a transaction Ti either
overwrites another delta mapped to the same node by an older transaction Tj|j<i or
is overwritten by another delta mapped to the same node ID by a newer transaction
Tk|k>i or is the only delta mapped to that node. It follows that overwritten deltas are
not valid for a CSR update. Therefore, for a CSR, CSR0, and transactions T0, T1, ...
Tn that store deltas, updating CSR0 to CSR1 would be as follows:

CSR1 = CSR0 + �dist
T 0

�owrt
T 0

+ �dist
T 1

�owrt
T 1

+ ... + �dist
T n

�owrt
T n

where �dist
T i

is the set of deltas by transaction Ti uniquely mapped to their respective

nodes, while �owrt
T i

are deltas that were last overwritten by Ti. These deltas (�dist
T i

and �owrt
T i

) that are visible to Ts during the delta store scan described above are
used in the delta merge. The algorithm of the delta merge is shown in [33]. The
node IDs are first grouped into two sets, L and U, based on the maximum node ID
in the old CSR (see Fig. 4.5) before the updates in the deltas, i.e., L are IDs of nodes
that existed in the old CSR and U are IDs of newly inserted nodes (Line 1 to 5). For
nodes that were not updated since the last CSR update, their corresponding entries
in the old CSR are copied to the new CSR (Lines 9 and 14), whereas for newly
inserted and updated nodes, the entries are updated with the deltas in the new CSR
(Lines 11 and 17). Note that the CSR representation is oversimplified since a CSR
has three arrays, not one.

In [35], we also present an adaptive approach that decides at runtime based on a
cost model whether a delta update or a complete CSR rebuild is the better option.
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4.6 Exploiting the Storage Hierarchy for Time-Travel
Queries

In transactional graph DBMSs, the underlying graphs evolve since they are subject
to changes. Valuable insights can be obtained when the intermediate states after
changes after kept for analysis, which is the purpose of temporal DBMS. To
enable effective querying of past data, it is useful to consider (bi-temporal) two
distinct time domains: valid time, which relates to the real world, and transaction
time, which relates to system-internal time. However, managing additional states
within a DBMS results in increased overhead in data storage and subsequent query
processing but also additional constraints in validity and locality challenges.

Most of the approaches are built upon versioning, which decreases query
performance (for non-temporal and temporal workloads) due to broken graph
locality or a full-snapshot approach, which leads to increased storage costs. We
argue that by leveraging the memory and storage hierarchy for modern systems, it
is possible to manage both low query processing overhead for non-temporal works
and low storage overhead by keeping only relevant data.

To address this, we introduce an approach for storing and processing temporal
data in materialized views, taking into account the memory hierarchy of modern
systems. We call this approach temporal materialized views (TMV). Further, we
demonstrate an effective approach to solving the query containment problem for
queries on different time intervals.

4.6.1 Data Model

We extend the labeled property graph model by valid time and transaction time
domains under which nodes and relationships are described. The valid time is the
real-world time, assigned to the data externally, i.e., by the user. Therefore, we
store the valid time as additional properties of the nodes and relationships. The
transaction time is managed by the MVCC protocol, which provides all necessary
information like the start and commit of the transaction. Further, we consider a
linear order of events, which are inserts, updates, and deletions. Deletions are never
executed directly; instead, they will be executed logically by setting the appropriate
deleted flag of a record. For validity, we consider that nodes and relationships are
only valid if their valid or transaction time periods are contained in a given time
period. In graphs, it follows that a relationship is only valid (in the valid time or
transaction time) if its source and destination node are valid too.
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4.6.2 Temporal Query Processing

We provide several temporal operators, which are described in [10]. These operators
are used for navigation through a graph with temporal validation. Valid time or
transaction time can be passed as arguments to the operators. We allow the creation
of complete snapshots of the graph and an additional temporal operator to add tuples
to a specific temporal materialized view. These views can be scanned and accessed
with the described operators. Further, we provide validation operators known from
the interval algebra as built-in functions in Filter operators.

Based on the data model and these operators, we propose an approach to
temporal graph processing and temporal materialized views. Query processing can
be improved by placing these views in a higher layer of the memory hierarchy.

4.6.3 TMV Model

Materialized Views store typically results of queries. In graphs, MVs are mostly
sub-graphs. Calculated results of queries can be recalculated by storing the nodes or
relationships to which they belong. This increases the containment of the results of
other queries. We define MVs under the valid time and transaction time to temporal
materialized views that only store valid tuples in the given time periods.

For creation, the TMVInsert operator can be placed in the appropriate position
of the query pipeline. Further, a hop argument can be passed to the operator in order
to increase the containment for other queries. The n-hop argument indicates the
additional hops of nodes subject to insertion into the TMV. A high n-hop argument
increases the containment of other queries. Internally, the TMVs use separate tables
for nodes and relationships as chunked vectors. At insertion, the tuples are split into
nodes and relationships and stored in the TMV tables.

For placement, we store the main graph, which is the recent graph, always on
disk or flash. TMVs are placed in a higher layer like DRAM or, if available, PMem.
If there is no memory left, the TMVs are evicted to disk and later replaced using an
LFU strategy.

For faster access and query containment, we use an interval tree. The interval is a
suitable data structure to automatically select suitable TMVs for a query. An interval
is a binary search storing intervals ordered by the lower bound. TMVs are stored by
their intervals as keys into the tree. By iterating through the tree, overlapping TMVs
can be found. The found TMV contains possible results. For uncovered intervals,
the main graph has to be scanned again [10].
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4.7 Related Work

Related to our work are approaches aiming at leveraging persistent memory for
database structures, graph database management in general, as well as temporal data
management. In this section, we briefly discuss the relevant work in these areas.

4.7.1 PM-Aware Storage Design

With the commercial availability of Intel Optane DCPMM, researchers have
proposed various adaptations of existing data structures to PMem. This includes
several variants of the B-Tree [14, 67], hybrid approaches like the FPTree [55] where
inner nodes are kept in DRAM and only the leaf nodes are stored in PMem, the
BzTree [6], the LB+-Tree [47], DPTree [71], and HiKV [69], as well as numerous
LSM-Tree variations [40] and LSM-based key-value stores such as RStore [46]. In
[38] we have proposed an approach for selective caching of the multidimensional
persistent index structure Elf.

In addition to such individual data structures, also approaches for PMem-based
storage engines have been proposed. SOFORT [54] is a columnar transactional
storage engine leveraging PMem by minimizing logging and updating data in place,
aiming for mixed OLAP and OLTP workloads. Peloton [57] is another relational
DBMS engine already considering PMem by applying write-behind logging [7].
The basic idea is to write and flush all changed entries in place to PMem during the
commit.

4.7.2 Graph Database Management

For graph data management, different data models have been proposed in the past.
Among these models, RDF for the Semantic Web and property graph models are the
most prominent [3]. Based on these, query languages like SPARQL [59] for RDF
triple data, diverse SQL dialects, and dedicated languages like Cypher [22], Gremlin
[60], and GQL [21] have been developed. Recently, the SQL standardization
committee has published SQL/PGQ [16] as part of SQL:2023 Part 16 for integrating
graph pattern matching into SQL.

Depending on the supported data model and query language, graph database
systems can be classified into:

• Special-purpose systems such as triple stores for RDF data like Virtuoso
• Native stores for property graphs, e.g., Neo4j [52], kuzu [19], Memgraph [50],

TigerGraph [65], and Amazon Neptune [2], which supports also RDF and
SPARQL

• Relationally backed approaches such as DB2RDF [11] and EmptyHeaded [1]
• Extensions of SQL systems like Grail [18] and SAP HANA [62]
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Here, standard DBMS implementation techniques are used for data storage, index-
ing, transaction management, and query processing. In addition to standard rela-
tional features, graph database systems particularly support traversal operations
[56], as well as graph analytics [53, 63].

While graph database systems provide the standard features of DBMS including
transactional updates, graph processing engines aim at efficient and scalable
analytics, often for distributed environments. Examples are [12, 48], and Giraph
[4] implementing the bulk-synchronous parallel programming model or extensions
for Apache Flink like Gradoop [39] or for Apache Spark like GraphX [23].

4.7.3 Temporal Graph Data Management

In addition to temporal extensions to relational databases that are standardized
in SQL:2011 [42], there are also approaches to support temporal data in graph
databases.

T-GQL [15] represents temporal connections by introducing additional rela-
tionships. Based on GQL and algorithms to capture different path semantics,
the temporal graph query language T-GQL is proposed. Clock-G is a temporal
graph management system that supports temporal processing [49]. This system
introduces the operation-based property graph, suitable for processing temporal
data. Additionally, the system supports various temporal queries such as point-
based, range-based local queries, and global queries. TGraph is a temporal GDBMS
that supports ACID transactions and processing of temporal graph queries [29].
Gradoop extensions for processing and analyzing temporal graph data have been
introduced in [61]. It employs the temporal property graph model as the underlying
data model and can handle distributed graph workflows. Furthermore, the authors
have presented a set of operators for processing bitemporal queries. A similar
distributed system is Raphtory [64].

ArangoDB is an open-source graph database that provides additional support
for processing time-travel queries [5]. The underlying data model uses tech-
niques known from persistent data structures, also known as non-ephemeral data
structures [17]. Another storage engine for temporal graphs is ImmortalGraph
[51]. The engine uses snapshot groups to manage historical graphs incrementally.
ChronoGraph [13] is an analytical engine for temporal graphs. The underlying
data model extends the property graph by events to support point and periodic-
based analytics without snapshots. TEA is a temporal engine designed for temporal
random walks [28]. The system employs a sampling method to process temporal
algorithms.
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4.8 Evaluation

We use the Social Media Benchmark (SNB) from the LDBC for our evaluation,
especially the interactive short reads. We use different starting points for particular
queries to show a variety of executions. These starting points are denoted as cmt
or post. Further, we use the adaptive approach for every execution. The results are
given in Fig. 4.6. In general, the higher latency and lower bandwidth of PMem lead
to a slower execution for almost all queries. For short-running queries (1–3), the
PMem approach shows a similar runtime since latencies can be hidden effectively
due to the adaptive approach. This shows that our approach can achieve DRAM-like
performances for particular queries. We compare the difference in detail in [8, 9, 34].

For the transactional update propagation for analytics, the microbenchmark is
given in Fig. 4.7. The left side shows the update propagation time for updates. The
time increases with an increasing number of updating queries. Further, the increase
depends on the degree of the underlying graph. On the right, a comparison between
PMem and DRAM for the update propagation is given. For both, the query execution
runtime is similar, effectively hiding PMem latencies. A detailed evaluation of the
analytics is given in [33, 37, 38].

We use the LDBC SNB dataset with synthetical queries adapted from the T-
Cypher specification to evaluate the temporal approaches. The results are given
in Fig. 4.8. We compare the usual query against the execution of full snapshots
and TMVs. The results show that the TMV approach provides a performance
between the temporal query execution and optimized full snapshots. TMVs can
provide reliable performance while providing less storage overhead, compared to
full snapshots. A more detailed evaluation is given in [10].

Fig. 4.6 LDBC short reads query execution

Fig. 4.7 Update propagation time (left) and copy on DRAM and PMem (right) comparison for a
mixed workload
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Fig. 4.8 Temporal query execution compared with runtime of full snapshots and TMVs

4.9 Conclusion

In this project, we have explored how persistent memory can be leveraged in
modern data management architectures. Though currently commercially not suc-
cessful, persistent memory represents a promising technology for data management,
eliminating the need to move data between disk and memory—at least to some
extent. However, the efficient use of PMem requires rethinking data structures and
architectures.

Based on an analysis of the specific characteristics of PMem technology
regarding latency, bandwidth, and the need for failure atomicity of updates, we
have discussed, implemented, and evaluated design choices regarding storage
structure, transaction, and query processing in a property graph database. Our
implementations and experiments have shown that the higher latency of PMem
compared to pure in-memory approaches based on traditional DRAM can be
hidden by hybrid data structures and cache-friendly processing, e.g., appropriate
data structures and query compilation. The main benefits are, among others, the
competitive performance without the need to keep large parts of the data in (volatile)
main memory (resulting in constant answer times both for cold and hot data) as well
as near-instant recovery guarantees.

However, PMem also provides opportunities for new approaches. As one exam-
ple, we have presented the idea of query recovery. By inserting materialization steps
for intermediate results into the query pipeline and logging the progress level of
the query execution, we can recover and continue the query after a system failure.
Our evaluation has shown that the materialization overhead is minimal when using
PMem while significantly accelerating the failure recovery. The point at which the
intermediate results are materialized and the progress level of the query execution
before failure play a crucial role in the trade-off between overhead and benefits of
recovery.

As a second example, we investigated how the memory hierarchy of modern
systems can be better exploited to speed up temporal query processing, as temporal
workloads store multiple versions of data, which creates conceivably a large
amount of data. Placing relevant sub-graphs, i.e., recent versions of the graph, as
a materialized sub-graph in higher layers of the memory hierarchy, e.g., in PMem,
improves the performance of future queries.
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Although Intel Optane PMem has been discontinued, the findings of this project
remain highly relevant to future hardware innovations. CXL (Compute Express
Link) stands out as a promising candidate for extending the memory hierarchy of
future systems. CXL enables systems to scale beyond the limitations imposed by the
DDR interface, providing greater flexibility and capacity. Optimization of DBMS
for CXL will focus on latency, as it is expected to be higher than traditional main
memory over DDR. Consequently, our findings are expected to be applicable to
CXL.

Besides persistent memory, there are more additions to the traditional memory
hierarchy of modern systems. Accelerators such as GPUs or FPGAs usually come
with their own device memory in the GB range. In our project, we further developed
an adaptive update handling approach in a graph HTAP setting where transactional
workloads update the main graph on the host while analytics are offloaded to the
GPU for accelerated execution. We addressed the problem of update handling by
integrating existing GPU-based graph analytics frameworks into HTAP systems,
where the transactional updates to the main graph need to be propagated to the CSR
replica of the graph on GPU. For this purpose, we adapted the concept of delta store
as a faster update handling approach than rebuild immediately.
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Chapter 5
MxKernel: A Bare-Metal Runtime
System for Database Operations on
Heterogeneous Many-Core Hardware

Marcel Lütke Dreimann , Jan Mühlig , Michael Müller ,
Olaf Spinczyk , and Jens Teubner

Abstract Large-scale data processing forms the core of modern online services,
such as social media and e-commerce, calling for an ever-increasing performance
with predictable service quality. Even though emerging hardware platforms can
deliver the required performance, actually harnessing it and guaranteeing a certain
service quality is still a challenge for application and system software developers.
We argue that the major hindrance for applications and system software alike
lies in the design of today’s system software architecture. The thread abstraction,
for example, hides hardware characteristics, such as the memory topology or
accelerators from applications and application behavior from the system software,
forcing the latter to base resource management on assumptions while preventing the
former from leveraging the potential of modern hardware. We present the MxKernel
as a novel system software architecture with the requirements of modern data-
intensive applications in mind. Instead of threads, the MxKernel provides MxTasks
as control flows, short, closed units of work that can easily be annotated with
application-specific hints giving a glimpse into an application’s future behavior.
These hints are used by the MxKernel to provide automatic synchronization and
prefetching, as well as efficient dynamic resource partitioning to ensure performance
isolation and the observance of quality of service requirements.
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5.1 Introduction

New application classes and software deployment models are putting immense
pressure on system software to process data faster and at larger scale while
providing predictable quality of service at the same time. For example, “Real-
time analytics” on a cloud server demands for high transaction rates even with
complex analysis queries running concurrently. Service-level agreements between
the cloud service provider and the customer must always be met, as penalties are to
be avoided.

Emerging hardware platforms can provide the necessary performance. Yet,
leveraging it is difficult. It is still unclear how large degrees of parallelism, complex
memory hierarchies, or increasing hardware heterogeneity can be adequately sup-
ported by systems and application software. While “predictable quality of service”
calls for strict resource partitioning, the ability for dynamic resource management
is mandatory, because data center servers can host a diverse set of workloads, each
potentially exhibiting bursty behavior. Recent research has shown that fast resource
migration is crucial for avoiding idle resources and for keeping tail latencies
small [16, 20, 43, 48].

All this is a matter of the whole system software stack and of how we
develop application software for modern hardware. In an ideal world, all affected
layers, namely, hypervisor, Operating system (OS), Database management system
(DBMS), and application software, would collaborate to handle these cross-layer
issues. However, in the real world, their interfaces are narrow and dominated by
legacy standards, such as POSIX [2, 3]. Traditionally, each layer aims for full control
over all available resources with sub-optimal outcome.

In front of this background, the authors designed a novel and more efficient sys-
tem software architecture, the MxKernel, and evaluated an experimental prototype.
This chapter describes the most important concepts and results.

With the MxKernel architecture as a blueprint, a system software stack can
achieve the following goals:

Tidiness: Each architectural layer has a well-defined redundancy-free purpose.
Efficiency: Applications, DBMS, and OS can all fully exploit the parallelism and

heterogeneity of modern computer hardware.
Transparency: If needed, physical hardware characteristics are communicated

up through all layers even into the application.1

Isolation: Concurrent parallel applications are guaranteed a fair share of
resources as well as a secure execution environment.

Elasticity: Resources are assigned and revoked at an unprecedented rate to
optimize resource usage.

Figure 5.1 provides a high-level overview of the MxKernel architecture. Applica-
tions and global (system) services “live” inside dynamic resource containers that are

1 For instance, the OS will never hide crucial information or access paths from the DBMS.
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Fig. 5.1 MxKernel architecture overview

called cells. A cell has full control over its assigned resources, such as CPU cores,
GPUs, FPGA regions, or memory. Time-sharing is avoided as long as possible. Cells
can make use of MxTasking, which is an adaptive user-level tasking framework for
heterogeneous many-core systems. MxTasking is highly reusable and specialized
on handling parallel execution and synchronization of a cell’s control flows that
are abstracted as so-called MxTasks. The resource partitioning and management
is performed by the MxVisor. It is a thin, privileged software layer that assigns
resources to cells on demand and withdraws them when necessary. If a machine
is dedicated for a single cell, MxVisor would not be used to avoid any resource
partitioning overhead. In this case, MxTasking would run directly on the bare
hardware. OS and DBMS services beyond the functionality provided by MxVisor
and MxTasking are provided as library functions that can either be used within an
application cell or as a dedicated system service cell. In any case, OS and DBMS
are run as equal peers.

A key enabler for the efficiency of the MxKernel architecture is the use of
MxTasks instead of a classical “thread” model. Section 5.2 therefore explains the
advantages of task-based parallelism in modern heterogeneous many-core systems
in general and the MxTask abstraction of MxTasking in particular. Implications
of this design for the performance of data processing are addressed in Sect. 5.3.
The overall resource management within the MxVisor is explained in Sect. 5.4,
which also provides an evaluation of the achieved elasticity. Finally, Sect. 5.5 will
summarize our insights gained from this experiment.

5.2 Task-Based Parallelism

Today, it is primarily up to the application code to fully exploit modern hardware
features such as parallelism and sophisticated memory architectures. However, as
hardware becomes more intricate, applications often lack awareness of precise
hardware characteristics. A similar situation of partial knowledge, which prohibits
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efficient use of modern hardware, can also be observed on the level of the execution
engine, such as the OS. It is aware of all hardware details but possesses only limited
comprehension of the application’s intention.

5.2.1 Background

We argue that this problem is caused by the limitations of the dominant control
flow abstraction: Threads serve as the OS-application interface. They abstract com-
puting resources and enable parallel code execution without hardware knowledge.
However, threads cannot properly communicate application knowledge to the OS.
This leaves a large untapped potential for improving performance. As an example,
consider memory accesses: Applications distribute data across several Non-uniform
Memory Access (NUMA) regions in modern memory hierarchies. These regions
have different access latencies based on the thread’s execution location [6]. Without
information about future memory accesses, the OS must guess the appropriate CPU
core to schedule a thread data-local. OSs approach this differently, for example,
migrating memory pages between NUMA regions to reduce remote requests by
considering a threads’ access patterns [14, 35, 47]. However, as the future is
unknown, the OS needs to rely on historical data for its scheduling and placement
decisions.

5.2.2 MxTask Abstraction

In order to address this issue, we present MxTasking, a framework designed to
facilitate the creation of latch-free and parallel data structures. One of the core
principles of MxTasking is to replace conventional threads as a control flow
abstraction with so-called MxTasks. MxTasks represent small, self-contained units
of work instead of a sequence of straight-line code often represented by threads. An
MxTask is intentionally designed to access only a limited number of data objects
during its execution, making it more fine-grained than threads. The utilization of
a thread can be compared to spawning multiple tasks, thereby accomplishing a
more extensive work package through collaborative efforts. From an application’s
perspective, MxTasking aligns with an event-based design. For computational
work, the application spawns one or multiple MxTasks received by the MxTasking
runtime and processed in an asynchronous manner. Once a task has been selected for
execution, it is completed in an atomic and non-preemptive manner, allowing tasks
to share the stack and minimizing the overhead associated with context switches.

We will use the traversal of a treelike data structure to demonstrate the notion
of tasking. Traditionally, tree traversals are implemented by sequentially visiting
nodes, following the child pointers from the root to a leaf node. As one node visit
leads to the next, this pattern creates a lack of transparency for the thread and the
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Fig. 5.2 MxTasks can be annotated with application knowledge to share characteristics and
requests with the underlying MxTasking framework, such as a task’s priority, a specific CPU core
or NUMA region, or accessed data objects

underlying system in terms of future memory accesses: The thread knows the next
accessed node only within a short timeframe; predicting which nodes the thread
will visit is practically impossible. By using MxTasks, we break down the traversal
process into a sequence of individual steps. One task visits one node and generates
a new task to visit the next. As a result, the developer gets an understanding of the
specific node an individual processing unit will access during its execution when
initiating that task.

In order to make this knowledge also accessible to the system, developers
can share their expertise by utilizing annotations, which function as an interface
between the application and the underlying MxTasking framework. The primary
objective of annotations is to propagate application-specific knowledge about run-
time characteristics to the execution layer and effectively convey a task’s demands
and requirements. We depict a range of annotations in Fig. 5.2: For instance, the
application may request the execution of a task at a designated CPU core or within a
specific NUMA domain. The inherent potential of annotations, however, lies in the
ability to annotate the data objects a given task will interact with. When initiating
a task to visit a tree node during traversal, for example, the developer has the
opportunity to impart their expertise to the execution layer, thereby enabling the
runtime to understand the interaction between code and data.

Annotations will be employed by MxTasking in various ways. For instance,
the link between tasks and their accessed data objects empowers the runtime to
bring data into the cache before the application accesses it, aiming to hide memory
latencies behind the execution of preceding tasks. Furthermore, MxTasking utilizes
the available knowledge to coordinate tasks that concurrently interact with the same
data object. Instead of dealing with different synchronization mechanisms, such as
latches or optimistic techniques, the developer can delegate this responsibility to the
execution layer by requesting synchronization for specific data objects. To achieve
this, the developer only needs to annotate tasks with the accessed data object and
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specify whether the task will read from or write to the data. Finally, the developer
can annotate performance hints to task families, which help MxTasking schedule
tasks efficiently on heterogeneous computing platforms.

In the following paragraphs, we will dive deeper into annotation-driven prefetch-
ing, task synchronization, and annotations for heterogeneous computing.

5.2.3 Annotation-Driven Prefetching

By attaching relevant information about accessed data objects to MxTasks, the
developer empowers MxTasking to address a prominent challenge modern data
processing systems face: memory latencies. Particularly when the data is not cached,
the CPU must stall while the memory subsystem transfers data from memory into
registers, causing significant delays in data processing. While the hardware already
tries to identify access patterns and bring data into the cache ahead of time [13, 45],
this is particularly hard for—from the hardware’s point of view—random accesses.

The application often possesses a deeper awareness of the data that will be
required in the near future. Software-based prefetching enables a program to
provide hints to the hardware regarding forthcoming data access by executing
prefetch instructions. This feature allows the hardware to load data into the cache
asynchronously, thereby circumventing the limitations imposed by a stream-based
look-ahead mechanism. Treelike data structures represent an excellent example
for studying random access patterns that pose challenges to data-stream-based
predictions: When traversing a tree structure and transitioning between nodes, the
hardware cannot anticipate forthcoming node accesses. But even in the context of
software-based prefetching, the temporal gap between identifying the subsequent
node and accessing it proves inadequate for effectively leveraging a hardware
hint. To tackle this problem and ensure a temporal gap between the identification
of a node and its access, several approaches reorganize the application code,
for example, by grouping access stages [9] or using coroutines [39]. Although
these studies have shown promising results, they possess a variety of drawbacks:
They necessitate significant reconstruction of data structures and algorithms while
offering only little ability to regulate the timing of prefetches. Plus, the optimization
is confined to the application level and does not apply across application boundaries.

In contrast, the inherent design of the tasking concept separates the identification
of an accessed data object (within one task) from its concrete access (carried out by
the follow-up task). This renders prefetching remarkably straightforward for both
the developer and the execution engine. Once the developer annotates and spawns
MxTasks, the runtime “sees” tasks and their corresponding data objects within the
task pools. Based on that information, MxTasking will inject prefetch instructions
between the execution of tasks to bring soon-accessed data objects into the cache.
Consequently, applications developed using MxTasks do not require any further
modifications in order to enable prefetching while offering a higher level of efficacy
compared to manually tuned code: In contrast to that, MxTasking has the capability



5 MxKernel: A Bare-Metal Runtime System for Database Operations 123

to automatically arrange the execution of prefetch instructions, even when multiple
applications operate on the same tasking instance.

5.2.3.1 Managing Prefetch Requests

To effectively implement data prefetching, MxTasking must have access to
forthcoming tasks and their corresponding annotations. The temporal constraints
imposed by the memory subsystem may render it inadequate to prefetch a task’s
data object right before its execution, thereby requiring the examination of multiple
tasks—specifically their accessed data—in succession. For every task-executing
worker,2 however, MxTasking includes a set of queues that manage tasks like a
linked list, connecting tasks through pointers. As a result, to examine the pending
tasks for their annotated data objects, the worker is required to sequentially traverse
the linked items—leading to costly pointer chasing and implicit cache misses for
the task descriptors. To reduce the occurrence of implicit cache misses and optimize
the retrieval of a specific impending task, such as the third-closest task, MxTasking
employs two distinct buffers: one for a limited set of upcoming tasks (extracted
from the queues) and one for associated prefetch requests, which are generated
based on task annotations. Figure 5.3 outlines this approach.

Whenever the worker is prepared to execute the subsequent task from the task
buffer (task0 in Fig. 5.3), it initially communicates with the prefetch buffer to start
prefetching both a subsequent task descriptor (task1 in the given example) and an
annotated data object. Software prefetches are conducted asynchronously by the
memory subsystem, allowing the worker to execute the pending task while the
system brings data close to the CPU. As a result, the latencies associated with the
memory transfer are hidden by the concurrent execution of another task.

Fig. 5.3 In order to obtain an
understanding of the
subsequent tasks to be
executed and the data objects
to be prefetched, MxTasking
utilizes two separate buffers

worker

data cache main memory

task0 task1 task2 task3

task buffer

task1

0xA

task2

0xD

task3

0xC

prefetch buffer

0xA 0xB 0xC 0xDtask0 0xB

access

execute

prefetch

2 MxTasking spawns one worker thread per logical CPU core that continuously receives and
executes tasks.
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5.2.3.2 Prefetch Distance

In the illustrated instance depicted in Fig. 5.3, we assumed that MxTasking
prefetches the data for the task after the next one, which implies a prefetch distance
of 1. However, the prefetch distance is of significant importance in ensuring a
sufficient temporal interval for the memory subsystem to transfer data into caches.
The amount of time needed is contingent upon multiple factors, including hardware-
specific parameters like access latencies, as well as software characteristics such
as task execution time, while the memory subsystem arranges the transfer of data
into the caches. In addition, online characteristics, such as the current memory
utilization, can have an influence on the optimal prefetch distance. MxTasking
offers two strategies to approach this dilemma.

Static Prefetch Distance To assist developers in tuning their applications for a
specific prefetch distance, MxTasking provides a central parameter for config-
uration. However, a single parameter can be inadequate, especially when tasks
of one application exhibit heterogeneous execution times or multiple applications
simultaneously operate on top of one MxTasking instance.

Dynamic Prefetch Distance Consequently, the logical improvement is the auto-
matic adjustment of the prefetch distance throughout the execution of a workload. In
applications where task durations vary, it is essential to allocate an adequate amount
of time between prefetching and execution for every task and its associated data
object. This necessitates positioning the prefetch instruction at an optimal point
relative to the data access [24]. Nevertheless, the critical factor is not the exact
number of instructions but the duration of their execution, which can be attached
to every MxTask through annotations or monitored automatically by the runtime.
With an anticipated execution duration for a task, MxTasking aims to allocate an
appropriate slot in the prefetch buffer at dispatch time.

5.2.4 Annotation-Driven Synchronization

In addition to facilitating performance optimizations, the comprehension of the
interaction between code and data through annotations enables MxTasking to ease
the implementation of parallel code. We will now focus on how the execution
substrate uses annotations to synchronize tasks concurrently accessing the same
data object, which can become a bottleneck in parallel-designed applications.
Optimizing the software for scalability poses a challenge for developers as they must
carefully consider the application’s requirements and the underlying hardware’s
inherent characteristics. Assuming that the developer includes annotations for
tasks that access data objects and indicates whether the tasks will read or write,
the MxTasking framework can effectively manage synchronization. From the
developer’s point of view, weaving synchronization into application code is no
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longer seen as necessary—except for annotating appropriately. MxTasking, on the
other hand, will wrap synchronization around the execution of individual tasks.

5.2.4.1 Integrated Synchronization Primitives

MxTasking offers four fundamental synchronization primitives, outlined as follows.
The task itself lacks awareness of the primitive MxTasking will select, indicating
that the synchronization is separate from the tasks’ implementation. However, the
developer can request a specific primitive through annotations. Based on system
state and annotations, MxTasking will dynamically choose among its primitives—
when not compelled.

Latches Latches,3 like spinlocks, are a simple way to synchronize concurrent
control flows. In MxTasking, spinlocks can be employed to synchronize concurrent
tasks, just like their usage in thread-based solutions. A rudimentary spinlock
mechanism can serialize all accesses, read-only or not, to achieve mutual exclusion.
When an application requests parallel reading on a shared object, the engine uses a
reader/writer-lock instead.

Optimistic Synchronization Recent research suggests that latch-based techniques
struggle with read-heavy workloads [7, 8, 27, 29]. While reader/writer-locks have
overhead from cache-coherency protocols, optimistic mechanisms avoid writing
latch variables by executing read-only operations speculatively. The idea is to check
a version counter before and after execution to test if the optimistic execution
was successful—and try again if the versions do not match. Writing operations
continue utilizing other synchronization mechanisms and increment the version
counter after the execution to ensure consistent version updates. The MxTasking
worker manages optimistic versioning for the synchronized task. If the worker finds
a version discrepancy, the task is reset and re-executed until it’s correct.

Like in other optimistic approaches, physical removals of shared objects need
to be handled cautiously. The parallelism enables to execute reads and physical
free operations on the same data object concurrently. As a result, one task may
mistakenly operate on corrupted data, resulting in errors. To avoid reads to corrupted
data, MxTasking utilizes Epoch-based memory reclamation (EBMR) [15], similar
to Silo [46] and the decentral procedure realized by the open BwTree [52].

Hardware-Assisted Synchronization Besides software-based implementations,
synchronization can also be achieved through hardware mechanisms. At first
glance, hardware-assisted synchronization, such as Hardware Transactional
Memory (HTM), offers a combination of efficiency and user-friendliness [28, 31].
The developer only marks critical sections, e.g., by using compiler built-ins, and
explicitly delegates the synchronization to the hardware. However, not all CPUs

3 In database contexts, in-memory locks are typically called “latches” in order to distinguish them
from locking mechanisms on user-level objects (e.g., two-phase locking).
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are equipped with built-in synchronization capabilities. And despite its apparent
simplicity, the developer must provide a fallback plan that is used when the hardware
encounters repeated synchronization failures, leading to intricate application code.
MxTasking includes HTM as a potential synchronization mechanism for con-

current tasks. Whenever the application or the framework chooses HTM as a
primitive, MxTasking injects CPU instructions to wrap hardware transactions
around a task’s execution. If the transaction fails multiple times, the runtime uses
a conventional spinlock as a fallback plan. Consequently, the responsibility of
handling the complexities of implementation is shifted to the runtime environment,
relieving application developers of this burden. Additionally, MxTasking will use a
backup synchronization primitive if the underlying hardware does not support HTM.

Synchronization through Dispatching Besides typical synchronization primitives,
MxTasking’s run-to-completion semantics allows dispatching-driven synchroniza-
tion. The idea is to assign tasks accessing the same data object to the same worker
thread. As all tasks assigned to the same worker run uninterruptedly, their execution
follows a sequential order. This way, active waiting for resources and potential
contention can be avoided. Furthermore, dispatching-driven synchronization can
provide benefits, particularly in NUMA environments, in addition to addressing
concerns linked to concurrency. Instead of moving data between NUMA regions,
dispatching-based synchronization moves code to data. Previous studies, such as the
DORA system [38] and H-Store [22], have shown that employing similar techniques
can improve cache locality and transaction throughput.

5.2.4.2 Applying Synchronization

The runtime uses one of the given primitives, automatically or based on annotated
requests, to synchronize newly created data objects that seek isolated access. Syn-
chronization affects two framework components. Upon spawning, the dispatcher
assigns a worker (or logical CPU core) to a task. This allocation is sufficient for
dispatching-driven synchronization, since tasks on the same core run atomically and
sequentially.

The worker is responsible for applying further described mechanisms. If dis-
patching is not enough, the worker wraps synchronization around task execution
depending on the primitive and annotation. Simple latches are acquired before
executing the task and released afterward. For optimistic versioning, the worker
differentiates between reading and writing tasks. The worker checks the version
before and after a read-only action to verify integrity. When versions mismatch,
the task is reset and restarted until it succeeds. HTM synchronization requires the
worker to start a new transaction before completing the task and commit it afterward.
If the transaction fails, it is iteratively replayed until the worker chooses to switch
to an alternative synchronization mode.
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Fig. 5.4 MxTask families can implement their operation for CPU, GPU, or FPGAs. The developer
annotates a cost function for every implementation

5.2.5 Annotation-Driven Heterogeneity

Modern and heterogeneous hardware enables high performance in today’s systems.
However, the increased complexity of the architecture also leads to new challenges
for scheduling strategies [33]. For example, on the one hand, some accelerators such
as integrated GPUs share their memory with CPUs, but on the other hand, dedicated
GPUs or FPGAs require a costly data transfer. Moreover, every accelerator has a
different execution time for a task. Additionally, a setup phase, and therefore at
least one CPU core, is required before a task can be executed. MxTasking has
to take all these constraints and costs into account and deal with placement of
tasks and data objects. To utilize heterogeneous hardware MxTasking introduces
the concept of task families (see Fig. 5.4). Each member of a family describes
the same operation, but implemented for a different accelerator. MxTasking is
responsible for choosing the best accelerator at runtime. For this kind of decision,
a performance prediction model is required. Popular scheduling strategies, such as
HEFT, require a task’s expected execution time for each accelerator[1]. However, in
most cases, the execution time of a task depends on the operation and its parameters.
Annotations by the developer can help MxTasking with these scheduling decisions
for heterogeneous hardware. Instead of a constant value, the developer can define a
function for each member of a task family that describes a performance factor. This
factor may depend on different parameters such as the size of data objects and is
evaluated at runtime. MxTasking can use the attached information to select the best
performing accelerator at runtime and additionally implement load balancing [37].

5.3 Leveraging Tasks at the DBMS Layer

Using tasks to build data structures and algorithms differs from well-known thread-
based programming. Among others, DORA [38], Hyper [26], and Umbra [50] have
shown the benefits of task-based approaches for transactional and analytical DBMS
engines. However, MxTasking’s annotations allow optimizations and a streamlined
implementation. This section demonstrates the simplicity of building latch-free,
MxTask-based data structures by utilizing a Blink-tree [25] as an illustrative example.
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5.3.1 Building a Task-Based Blink-Tree

B-trees [4, 17] serve as crucial index structures in DBMSs and file systems, such
as BTRFS [42]. Consequently, B-trees are subject to substantial research and
improvement, particularly in relation to their caching behavior (e.g., [18, 40, 44])
and concurrent synchronization (e.g., [25, 27, 30, 34, 52]), leading to numerous vari-
ations. Specifically the Blink-tree focuses on minimizing simultaneously acquired
latches by not immediately introducing newly created nodes to the parent node.
Instead, each node includes a reference to its right sibling, making it accessible
for parallel traverse operations until a dedicated operation establishes the reference
from the parent to the new node—eliminating the necessity for parallel held latches.
As a result, each (logical) operation can be transformed into a sequence of discrete
steps, with each linked to a single node. This pattern facilitates the alignment of the
Blink-tree with the task model, wherein each step is executed as an individual task.

5.3.1.1 Operations

Each MxTask accesses only a single node and spawns a follow-up task for the
successor node, unlike thread-based operations on treelike data structures, which
use loops to access each node one after the other.

Insertion Figure 5.5 illustrates a pseudocode implementation of an insert operation
for an MxTask-based Blink-tree, including two segments: one for the traversal

input: node the task accesses, (key, value) to insert, callback to notify

1 if node->high_key() ≤ key: // key is out of range of this node
2 next node->right_sibling()
3 task mxtasking::new_task<InsertTask>(next, key, value)
4 task->annotate(next, mxtasking::readonly)
5 mxtasking::spawn(task)

6 else if node->type() inner: // continue traversal to the leaf
7 next node->child(key)
8 task mxtasking::new_task<InsertTask>(next, key, value)
9 task->annotate(next, mxtasking::readonly)
10 mxtasking::spawn(task)

11 else if node->type() branch: // child is a leaf; next task will insert
12 next node->child(key)
13 task mxtasking::new_task<InsertTask>(next, key, value)
14 task->annotate(next, mxtasking::write)
15 mxtasking::spawn(task)

16 else: // found correct leaf, insert value, and notify callback
17 node->insert(key, value)
18 callback->insertion_finished(key, value)

Fig. 5.5 Pseudocode illustrating an MxTask-based Blink-tree-insert operation
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(lines 1–15) and one for the actual insert (lines 16–18). While traversing, the task
identifies the next node until reaching a leaf node (line 16). How the next node is
identified depends on several factors. In the “typical” scenario, the node is examined
by employing, for example, binary search (lines 7 and 12). To identify potential
concurrently made modifications, each task checks if the accessed node contains
the required key-range and, if not, continues the traversal at the right sibling (lines
1–5). In either case, the task spawns a new MxTask, annotated accordingly (e.g.,
lines 8–10).

For simplification, we did not consider node splitting in this implementation.
When a node needs to split, the insertion task allocates a new one and moves half
the records. The reference to this new node within the parent will be placed by an
individual follow-up task.

Lookup and Update Implementing the corresponding lookup and update tasks is
straightforward. MxTasks read or update records instead of inserting them on leaf
nodes (line 17). The found (or updated) value is sent to the callback function (line
18).

5.3.1.2 Annotation-Based Prefetching

The data object (or node) annotation allows MxTasking to bring that data into the
cache before the task is executed. Although prefetching can reduce CPU stalls, it
intensifies the pressure on memory and instruction bandwidth. Thus, applications
must allocate prefetching resources carefully. In treelike data structures, distinguish-
ing important and non-essential prefetches is challenging: While traversing the tree,
just a portion of a node’s keys is accessed. And only one value (or child pointer) is
read. However, when accessing the node, it is unpredictable which keys and payload
will be necessary, compelling to prefetch the entire node or speculating on subsets,
potentially causing memory stalls if incorrect. Experiments showed that prefetching
the first half of a node’s keys presents an optimized trade-off between incurred costs
and cache misses penalties.

5.3.1.3 Annotation-Based Synchronization

Next, the MxTask-based Blink-tree uses annotations to pass information about
synchronization requirements. Sharing the access pattern, i.e., read or write,
in combination with accessed data objects enables MxTasking to manage the
synchronization of concurrent tasks. For this purpose, we annotate the insert task
as read-only during the traversal (lines 4 and 9 in Fig. 5.5) and as write for the
leaf level (line 14). To assist the runtime in selecting a matching primitive, we
specify two characteristics for new nodes: The anticipated access frequency and
the expected read/write ratio. As all queries start at the root, we annotate it as
accessed frequently. The number of accesses should decrease as a node’s (logical)
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distance from the root grows. And we assume a reverse reading-to-writing ratio: leaf
nodes are written more often than inner nodes. Utilizing this knowledge, MxTasking
prioritizes optimistic synchronization for nodes logically close to the root.

5.3.2 Experimental Evaluation

To study the potential and limits of MxTasking in real-world scenarios, we use the
in-memory Blink-tree, characterizing the behavior of modern in-memory database
engines. We will use both read-heavy and write-heavy workloads based on the
YCSB [12]. Before running workloads A (read/update, 50/50) and C (read-only)
with Zipfian distribution and 100 million operations, we insert 100 million records.
Each record consists of a 64 b key and a 64 b payload.

All benchmarks are evaluated on a two-socket Intel Xeon Gold 6226 machine,
clocked at 2.7 GHz. For all benchmarks showing an ascending number of cores, the
logical cores are ordered by NUMA regions, whereas the first 24 logical cores are
located in the first region and the next in the second. To be precise, the first 12 cores
of each region are only physical cores; from then we add “hyperthreads” (marked
as “SMT”). Additionally, we emphasize NUMA borders with a dashed line.

5.3.2.1 Annotation-Based Prefetching

We start with analyzing the impact of prefetching nodes annotated to tasks while
traversing the Blink-tree. Within this particular scenario, we make a distinction
between static and dynamic prefetching and compare the outcomes to an iteration
where we deactivated MxTasking’s capability to prefetch.

Static Prefetching For static prefetching, we instruct the runtime to initiate the
prefetch always p tasks before a task is executed. While the prefetch distance p

is tunable, we found that p = 2 leads to the best results, reported in Fig. 5.6 (green
line). As tree accesses are mostly latency bound, annotation-based prefetching
yields a significant improvement, ranging from 24 % more throughput for inserts to
40 % for the read-only workload. Especially the traversal is leveraged by software
prefetching, since the CPU—more specifically, the hardware prefetcher—cannot
predict the sequence of node accesses. In workloads that include frequent updates,
we see that memory prefetching has a rather minor impact (“only” 16 %), which we
associate with an elevated level of latch contention.

Dynamic Prefetching However, tuning the central prefetch distance for static
prefetching can be cumbersome. And static prefetching may have limitations when
it comes to executing tasks with varying execution times. The insert workload,
which consists of a combination of short-running traversal tasks and longer-running
inserts, offers initial insights into this matter.
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Fig. 5.6 Comparison of annotation-based prefetching for different workloads

To optimize the prefetch distance for every task, MxTasking allows to annotate
the expected execution time of tasks. Using this knowledge, MxTasking calculates
the prefetch distance for each task by considering the execution timings of other
scheduled tasks, the volume of prefetched cache lines, and the system’s mem-
ory characteristics. Although this approach increases the complexity of prefetch-
scheduling by 400 additional instructions per tree operation, it is worth noting that
it decreases the number of memory stalls by 5 % compared to static prefetching
for the insert-only workload. The impact is also seen in relation to the throughput.
Nevertheless, the higher volume of executed instructions reduces the efficiency for
other evaluated workloads. Due to better performance, we will conduct additional
benchmarks with a static prefetch distance of 2.

5.3.2.2 Comparison with State-of-the-Art Data Structures

We claim that the MxTask-abstraction allows the smooth development of scalable
applications on modern and future many-core technology while maintaining great
performance.

In order to investigate this theory, we undertake an evaluation of various
programming models and state-of-the-art data structures. These include optimistic
synchronized Blink-tree-implementations on top of conventional threads and Intel’s
Threading Building Blocks (TBB) [19, 23, 41], as well as the open BwTree [52],
Masstree [34], and BtreeOLC [27] (the latter derived from the index-microbench
framework [51]). To ensure comparability, we also forced MxTasking to use
optimistic synchronization primitives for this benchmark. The findings are presented
in Fig. 5.7, showing that the MxTask-based Blink-tree achieves the maximum
throughput in the insert-only workload, with 8.5 % more throughput compared to
its thread-based implementation and BtreeOLC. The implementation on top of TBB
achieves similar results as Masstree while additionally demonstrating scalability
beyond NUMA boundaries. In addition, MxTasking demonstrates better efficiency
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Fig. 5.7 Comparison of various Blink-tree implementations (on top of MxTasking, threads, and
TBB) and state-of-the-art data structures

for mixed read/update workloads with 15 % more throughput than the thread-based
variant on average.

The most prominent gaps are evident in the read-only workload. MxTasks achieve
a lookup rate of 75 million per second, which is 7 % higher than Masstree’s rate of
69.8 million. This performance is achieved by leveraging all available processor
cores. Notably, both implementations make use of software-based prefetching.
Both thread-based variants of the Blink-tree and BtreeOLC demonstrate comparable
throughput, achieving around 57 million read operations per second. This confirms
that our implementation of the Blink-tree is on par with latest advancements in the
field.

5.4 Dynamic Resource Management with Tasks and Cells

MxTasks offer efficient parallelism for real-world applications on modern heteroge-
neous server hardware, such as key-value stores, while simplifying parallel applica-
tion development with automatic synchronization and performance improvements
through automatic prefetching. However, while MxTasks enhance the performance
of individual applications, they are not inherently designed to manage multiple
applications from different users, necessitating address space and performance
isolation. These applications are critical components of interactive, data-intensive
services, where minimizing tail latencies is paramount for optimizing performance.
However, in data centers around the world, not just application performance
matters but also the maximization of resource utilization to avoid wasting expensive
resources due to underutilization. Thus, our exploration focused on designing global
resource management to efficiently utilize hardware resources while leveraging
MxTasks advantages to minimize tail latencies.
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5.4.1 Background

The design of such a resource manager with the combined goal of maximizing
utilization while keeping tail latencies down must solve the following two problems.

Scheduler-Induced Interference Operating systems and hypervisors employ
scheduling mechanisms for fairness among processes and virtual machines.
However, time-sharing techniques can introduce interference, leading to increased
cache misses and execution times, and memory bandwidth contention [5, 10, 32],
in turn causing exploding tail latencies [16]. This interference results from the
operating system scheduling threads of concurrent applications to the same physical
cores or on cores sharing the same last-level cache or memory controller. Hence,
simple techniques for performance isolation enforce strict resource partitioning in
the form of distinct CPU sets, group limits, and Cache Allocation to address this
issue.

Static Resource Partitioning While static resource partitioning ensures perfor-
mance isolation, especially for CPU cores, it lacks efficiency and flexibility, because
it inherently assumes that the resource demand of an application does not change
during its runtime. However, this is not the case for data-center applications because
the actual resource demand directly depends on its load caused by incoming client
requests. Usually, the pattern in which requests arrive changes over time. Often
one can recognize stark fluctuations in incoming traffic for an online application
depending on the time of the day, day of the week or month, or even the current
season. For example, the traffic of a local video-streaming service is higher during
the evening than during work hours, leading to the service not needing its resources
during work hours but requiring it at evening hours. Thus, static partitioning
often results in either performance degradation because partitions are too small to
handle the load of an application or resource wastage because partitions are over-
dimensioned for a rare worst-case scenario. It may even happen that overloaded
partitions and underutilized partitions exist simultaneously. Dynamic resource
partitioning offers a solution by allowing the reallocation of unused resources as
needed, departing from traditional OS schedulers and static partitioning methods.
One way to realize dynamic resource partitioning is Adaptive Resource Centric
Computing.

Adaptive Resource Centric Computing
Adaptive Resource Centric Computing (ARCC), introduced by Colmenares et al.
[11], utilizes elastic resource partitions and proactive monitoring to adjust resource
allocation for applications dynamically. In an ARCC system, applications run within
elastic resource containers called cells, whose sizes are determined at runtime
based on performance metrics. A resource monitor periodically evaluates each
cell’s performance and adjusts resource allocation according to predefined policies.
To efficiently handle resource changes, applications communicate their resource
demands through an API provided by a runtime system. Several implementations of
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ARCC, such as Tessellation [11], have been explored, with recent efforts focusing
on enhancing efficiency and performance in data center environments [21, 49].

5.4.2 State of the Art

Figure 5.8 depicts the architecture typical to most systems implementing ARCC
on top of Linux. Despite variations in inter-process communication and thread
allocation mechanisms, these systems share several key features.

Global Resource and Task Controller First, they feature a centralized controlling
and monitoring service in user space ( 1 ). This service dynamically adjusts resource
allocation based on load and utilization analysis, adhering to configured policies and
thresholds, and, thus, functions as a global resource manager.

Preempting and Reassignment in the Kernel Second, the controller leverages Linux
mechanisms, such as cgroups and thread pinning, to preempt threads and enforce
core allocation ( 3 ). Preempting a thread under Linux typically involves sending
an inter-processor interrupt (IPI) or instrumenting code with preemption points.
Furthermore, changing partition sizes involves system calls to change the respective
cgroups’ limits.

Informing the Cell’s Runtime Third, to prevent performance issues, the controller
notifies the runtime environment of each affected cell ( 2 ) to ensure proper thread
management upon resource allocation changes.

Some systems combine the last two steps by running Linux as a hypervisor and
each cell as a virtual machine with the runtime and application as unikernel, such as
the IX operating system [5].

Architectural Deficiencies While widespread, this architecture has inherent draw-
backs:

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

(Linux) Kernel
Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

worker worker worker worker worker worker worker

runtime runtime runtime
yield

updated allocation

performance report / allocation requests

Controller

cell 1 cell 2 cell 3

spawn

1

3

2

user-space
kernel-space

Fig. 5.8 Generic architecture of dynamic partitioners consisting of a central controller in user
space
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1 The user-space controller can become a bottleneck due to its single-threaded
maintenance loop, impacting scalability.

2 Dependency on existing OS abstractions limits efficient resource allocation,
requiring multiple system calls and inducing communication overhead.

3 The runtime environment must be informed of allocation changes, introducing
additional overhead and complexity.

Revising this architecture can significantly reduce system overhead and, thus, tail
latencies.

5.4.3 Enabling Swift Adaptation with the MxKernel

The MxKernel addresses state-of-the-art data center OS deficiencies through a
redesigned control and data plane architecture, outlined in Fig. 5.9.

Making Cells Kernel Objects enables the kernel’s direct control of worker threads,
eliminating communication overhead between the controller and the runtime envi-
ronment within cells. This eliminates disadvantages 2 and 3 .

Centralized Cell Creation and Destruction delegates responsibility to the con-
troller. It reads cell configurations, specifying details such as binary, RAM limit,
priority, and permission control. The controller calculates CPU core allocations
based on priority and creates cell kernel objects via hyper-calls to MxVisor. Upon
cell destruction, the controller redistributes freed CPU cores to optimize core
utilization.

Kernel-Space Core Allocation in MxKernel facilitates parallel CPU core alloca-
tions without controller requests. Allocation occurs via hyper-calls to the microhy-
pervisor ( 1 in Fig. 5.9), allowing cells to request multiple cores simultaneously.
The hypervisor’s core allocator uses a pre-calculated core pool to fulfill requests,

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Microhypervisor

cell 1 cell 2 cell 3

MxTasking MxTasking MxTasking

Controller

cell 1 cell 2 cell 3

1

3
2

worker pool worker pool worker pool

Core Allocator

creates
parallel

allocation
requests

yield
request

direct
activation

user-space
kernel-space

active workers

inactive workers

Fig. 5.9 MxKernel architecture featuring cells as kernel objects and kernel-space core allocator
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ensuring disjoint allocations. Thus, cells can allocate cores in parallel without
synchronization, reducing bottlenecks. If a cell exhausts its cores, idle cores
from other cells are utilized, necessitating synchronization. The hypervisor can
reclaim borrowed cores, ensuring efficient core utilization and overcoming previous
bottlenecks ( 4 in Fig. 5.9).

Pre-created Worker Thread Pools pinned on each physical core enables rapid
activation. At cell startup, MxTasking creates worker threads for each core, which
pause on a per-worker semaphore, except for the main thread. Upon additional
CPU core allocation, the hypervisor quickly activates workers by incrementing the
corresponding semaphore.

Fast Preemption with Shared Pages and MxTasks implements an efficient preemp-
tion mechanism for worker threads. Each cell’s MxTasking runtime creates a shared
memory page with the hypervisor, containing preemption flags for each worker.
Requesting core yielding involves writing to a cache line ( 3 in Fig. 5.9), avoiding
costly inter-processor interrupts. MxTasks enable frequent flag polling between task
executions. Upon flag detection, a hypercall blocks the thread on its semaphore,
freeing the core without requiring interrupts and reducing core withdrawal costs.

5.4.4 Experimental Evaluation

We conducted experiments to assess our new design’s benefits and limitations
compared to Caladan, a state-of-the-art data center OS utilizing ARCC. Two
micro-benchmarks examined CPU core allocation and withdrawal cost reduction.
A benchmark emulated an interactive application with frequent CPU bursts to study
the MxVisor design’s impact on tail latencies.

Experiments ran on a server with two 32-core AMD Epyc 7501 CPUs at
2 GHz, 256 GB RAM, running Debian 11 with Linux kernel 5.10 for Caladan,
and an extended Genode OS Framework version 23.11 on a modified NOVA
micro-hypervisor for the MxKernel prototype. We configure Caladan’s controller
to perform a maintenance cycle every 10 μs, which is the value Fried et al. used to
tune Caladan for minimum latency in their paper [16].

5.4.4.1 Dynamic Adaptation System Cost

We analyze the dynamic CPU resource adaptation cost of Caladan and MxTasking
using two micro-benchmarks.

Core Allocation
In Caladan, our benchmark triggers CPU core allocation by reporting queuing
delays above the threshold, prompting the controller to add a core in each main-
tenance loop until all cores are allocated. We create threads equal to the desired
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Fig. 5.10 Comparison of
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core count to ensure specified core allocation. Initially, only one thread runs, but
Caladan repeatedly adds a core after the first 10 μs maintenance period until all
threads start, with a core allocated for each. Costs increase with requested cores,
with about 55 μs for 4 cores and nearly 100 μs for 8 cores, reaching over 300 μs
for 28 cores. Caladan adds one core per maintenance cycle, incurring 1 μs to 2 μs
overhead per core due to required IPIs.

For the MxKernel, our micro-benchmark periodically requests CPU cores
every 20 μs, sleeping between periods. Utilizing our design, we allocate all cores
simultaneously. We measured the time from allocation requests to all worker
threads waking up. Figure 5.10 displays the results, showing MxVisor significantly
outperforming Caladan with a core allocation cost reduction of 77 % to 86 %. This
improvement stems from several factors: our design allows core allocation anytime,
eliminates Caladan’s costly maintenance period, and enables adding multiple cores
per request. Additionally, leveraging x86’s monitor and mwait instructions allows
us to let a CPU wait while monitoring a cache line in the C1 state until it wakes up
when the cache line is written to by another CPU core. Hence, we can avoid using
hlt to let idle CPU cores sleep and requiring an IPI to wake them up again.

Core Withdrawal
We utilized the allocation micro-benchmark as a measurement cell to assess the
costs of withdrawing and redistributing CPU cores, expanding the experiment
by adding two additional cells to create a constant load. Each background cell
executed tasks with a length of 1.3 μs, simulating MxTasks responsiveness in the
Blink-tree benchmark. With 30 CPU cores, the maximum for Caladan, and 3 cells,
we ensured each cell received 10 CPU cores when the measurement cell and
background cells were active simultaneously and 15 CPU cores per background
cell when the benchmark slept. Both systems withdrew ten CPU cores from the
background cells and allocated them to the measurement cell each time it woke up.
Figure 5.11a illustrates MxVisor significantly outperforming Caladan, with core
redistribution in MxVisor costing only 4

In Caladan, the high cost of redistributing 10 CPU cores stems from two factors.
Firstly, Caladan can only redistribute one CPU core per maintenance period, adding
10 μs for each core. Secondly, Caladan relies on inter-processor interrupts (IPIs) to
trigger preemption at the target core. However, Caladan’s IPI handler cannot directly
perform preemption as it employs user-space threads invisible to the Linux kernel.
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Fig. 5.11 Evaluation results for core withdrawal and latency. (a) Comparison of cost of redis-
tributing 10 CPU cores among three cells. (b) Execution time of latency benchmark for 128 CPU
cores, with background cell (N) and without

Consequently, Caladan signals the target core’s runtime environment to pause the
worker thread, necessitating a switch between user and kernel space for each core.
Activating the worker thread of the core’s new owner requires additional traversals
between user space and kernel, resulting in four transitions on the target core alone
to redistribute one core.

In contrast, the MxVisor requires only two traversals: one for entering the
hypervisor via the yield hyper-call and another for returning to user space to execute
the new worker thread. The pausing of the yielding worker thread and activation of
the new worker thread are performed entirely in kernel mode within the hypervisor.
Additionally, our yielding mechanism (described in Sect. 5.4.3) eliminates the need
for sending an inter-processor interrupt by polling a shared cache line to inform the
worker thread to yield directly. Furthermore, the MxVisor can request preemption
at any time, not just during maintenance periods, further reducing adaptation costs.

5.4.4.2 Impact on Tail Latencies

With its low system overhead, the design of the MxVisor can also reduce tail
latencies. To demonstrate this, we evaluated the perceived tail latency of a simple
interactive benchmark application. The benchmark simulates interactive behavior
by periodically sleeping and then executing CPU bursts. These bursts consist of
executing an extensive series of NOP instructions. We measured the time to perform
128 bursts as the perceived tail latency. We performed 100 iterations of these
measurements in two configurations: one without concurrent cells running and
one with one background cell continuously creating a high load on each CPU.
Figure 5.11b shows the results.

We observed that the benchmark execution time on Caladan takes about 20 ms
longer than on the MxVisor, with average times of 495 ms for Caladan and 478 ms
for the MxVisor. Comparing the tail latencies, Caladan has a tail latency of 504 ms
compared to 481 ms for the MxVisor, yielding a reduction in tail latency of about
5 %. Additionally, we determined that the MxVisor’s overhead is about 20 ms
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smaller on average than Caladan’s, with a maximum difference of 23 ms. Hence,
the MxVisor reduces system overhead by 80 % compared to Caladan, consistent
with our micro-benchmark results.

5.5 Conclusion and Future Work

The aim of this work was to improve both the implementation effort and efficiency
of data processing on modern hardware by using fine-grained and metadata-
annotated MxTasks as execution units. Traditional models, such as threads, face
significant challenges in exchanging knowledge with the hardware, obscuring char-
acteristics across abstraction layers. In contrast, MxTasks enhance communication
with the execution engine through annotations. This interaction between the appli-
cation and execution layers enables optimizations based on actual knowledge, such
as preloading data objects into the CPU cache based on anticipated task data access.
Additionally, annotated tasks streamline the implementation of highly parallel data
structures and algorithms by managing concurrent tasks at the execution logic
level, thereby eliminating the burden of complex synchronization protocols at the
application level. MxTasks have also been proven to simplify the implementation of
database operators, such as partitioned hash joins, while simultaneously enhancing
performance through more cache-friendly access patterns [36]. However, this explo-
ration of annotations within MxTasks is just the starting point, promising a range
of potential applications where annotations could further enhance performance
and streamline implementations. Notable examples include using asynchronous,
task-driven I/O to hide disk latency and leveraging optimized task scheduling to
minimize contention among CPU cores during transaction processing.

Moreover, we assessed the impact of the design on system overhead in typical
data center resource managers and proposed modifications to reduce overhead and
tail latencies. Implementing these adjustments, including in our prototype MxVisor,
demonstrates a tangible reduction in resource management costs and tail latencies.
However, the current MxVisor design has limitations.

First, the cooperative mechanism for withdrawing CPU cores relies on the
speed of the worker thread’s reaction to the preemption flag, assuming uninter-
rupted thread execution. While MxTasks typically execute quickly, preemptive
core withdrawal methods are under consideration for future improvement. Sec-
ond, monitoring to prevent interferences among cells, similar to Caladan, is not
employed currently, potentially leading to increased costs for the MxKernel when
implemented. Integration and evaluation of proactive performance monitoring into
the MxTasking runtime environment are ongoing, however.

Regardless of future improvements, this research has already shown that re-
thinking the system software stack for modern heterogeneous many-core systems
leads to better resource utilization and cleaner interfaces for application and system
software developers.



140 M. L. Dreimann et al.

Acknowledgments This work has been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)—361498541.

References

1. Alebrahim, S. & Ahmad, I. (2017). Task scheduling for heterogeneous computing systems. The
Journal of Supercomputing, 73(6), 2313–2338.

2. Atlidakis, V., Andrus, J., Geambasu, R., Mitropoulos, D., & Nieh, J. (2016). Posix abstractions
in modern operating systems: The old, the new, and the missing. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16 (pp. 1–17), New York: Association
for Computing Machinery.

3. Baumann, A., Appavoo, J., Krieger, O., & Roscoe, T. (2019). A fork() in the road. In
Proceedings of the workshop on hot topics in operating systems, HotOS ’19 (pp. 14–22). New
York: Association for Computing Machinery.

4. Bayer, R. & McCreight, E. M. (1970). Organization and maintenance of large ordered indexes.
In Record of the 1970 ACM SIGFIDET workshop on data description and access (pp. 107–
141). New York: ACM.

5. Belay, A., Prekas, G., Primorac, M., Klimovic, A., Grossman, S., Kozyrakis, C., & Bugnion,
E. (2016). The IX Operating System: combining low latency, high throughput, and efficiency
in a protected dataplane. ACM Transactions on Computer Systems, 34(4), 1–39.

6. Bergstrom, L. (2011). Measuring NUMA effects with the STREAM benchmark. CoRR,
abs/1103.3225.

7. Böttcher, J., Leis, V., Giceva, J., Neumann, T., & Kemper, A. (2020). Scalable and robust
latches for database systems. In 16th International Workshop on Data Management on New
Hardware, DaMoN 2020 (pp. 2:1–2:8). New York: ACM.

8. Cha, S. K., Hwang, S., Kim, K., & Kwon, K. (2001). Cache-conscious concurrency control
of main-memory indexes on shared-memory multiprocessor systems. In Proceedings of 27th
International Conference on Very Large Data Bases (pp. 181–190).

9. Chen, S., Ailamaki, A., Gibbons, P. B., & Mowry, T. C. (2004). Improving hash join
performance through prefetching. In Proceedings of the 20th International Conference on Data
Engineering, ICDE (pp. 116–127).

10. Chen, S., Delimitrou, C., & Martínez, J. F. (2019). PARTIES: QoS-Aware resource partitioning
for multiple interactive services. In Proceedings of the twenty-fourth international conference
on architectural support for programming languages and operating systems, ASPLOS ’19.
ACM.

11. Colmenares, J. A., Eads, G., Hofmeyr, S., Bird, S., Moretó, M., Chou, D., Gluzman, B., Roman,
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Chapter 6
Scaling Beyond DRAMWithout
Compromising Performance

Lukas Vogel , Christoph Anneser , Ferdinand Gruber ,
Thomas Neumann , Jana Giceva , and Alfons Kemper

Abstract In the past, the common assumption was that main memory would
become cheap and abundant enough to power database systems solely. This
assumption did not hold. This chapter presents approaches on how modern database
systems can scale beyond a single server’s main memory capacity by utilizing
trends in modern hardware without sacrificing performance. To this end, we
present four systems: Mosaic, a storage engine for analytical workloads; Plush, a
PMem-optimized storage structure for transactional workloads; PMFDS, a novel
programming model for fully disaggregated systems; and finally, FireArm, a just-
in-time compilation framework for rising ARM systems in the server space.

6.1 Introduction

Ten years ago, the common assumption in the database system community was
that main memory (i.e., dynamic random access memory, DRAM) would become
cheap enough and available in a large enough capacity to make it feasible to develop
database management systems (DBMS) purely residing in main memory. In this
predicted future, main memory DBMS could have made use of multiple advantages:

Fast DRAM Compared to a slow spinning disk drive (HDD) with ≈100 MB/s
throughput and ≈10 ms latency, DRAM is blazingly fast, achieving ≈100 GB/s
(1000× more) throughput and ≈10 ns (106× less) latency. Main-memory DBMSs,
thus, do not have to concern themselves with the disk bottleneck, provided the
datasets they work on fit into DRAM.

Simpler Architecture Since all data is stored on DRAM, no data must be
written back to disk except for logs and periodic system backups. Thus, no buffer
manager is required, freeing the system from keeping the state consistent between
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multiple storage locations. Forgoing a buffer manager allows for a comparatively
uncomplicated system architecture with one less bottleneck.

Many-Core Age As frequency scaling of CPUs hit a wall, chip manufacturers have
put increasing numbers of cores onto a single chip: A modern single socket server
may have as many as 128 cores (256 threads). Thanks to the high throughput of
DRAM, database systems can employ massively parallel algorithms without being
too bottlenecked by slow data access (i.e., reading data from disk), thus profiting
from advanced multi-core chips.

6.1.1 The Tough Reality

Unfortunately, the assumption that a typical server’s DRAM capacity grows while
price drops did not hold. Even worse, DRAM capacity did not keep up with the
world’s increasing dataset sizes, making it impossible to analyze terabyte-sized
datasets without employing cheap but slow background storage [36].

Some developments have tried to escape this issue by scaling out, i.e., distributing
data and computing between multiple servers in a cluster. Distributed processing,
however, incurs a high communication overhead. Instead, we looked at multiple
hardware advancements of the last years, which help us scale up (i.e., keeping data
and computing on a single server) beyond DRAM capacities. The following lists
some promising advancements and the challenges in exploiting them.

SSDs Got Fast A modern SSD can have a throughput of multiple gigabytes per
second, handle random reads, and write reasonably well, narrowing the gap (in
throughput at least) to DRAM. A traditional HDD has a throughput of ≈100 MiB/s
and seek times of ≈10 ms, making random access prohibitively expensive. Fast
SSDs thus enable memory-first database systems that gracefully decline to (still
quite fast) SSD speeds when running out of memory. Such a system, however, has
to be built with SSDs in mind from the ground up, as existing systems are built
around the shortcomings of HDDs and have many bottlenecks when directly ported
to SSDs.

The “Storage Zoo” Nowadays, one can buy many different device classes at
different price/performance points, as visualized by Fig. 6.1 first published in [50].
Each device class has its niche and complements the shortcomings of others well:
While HDDs are much slower than SSDs, they are also far cheaper per gigabyte and
thus predestined for cold data. On the other hand, Intel’s Optane Persistent Memory
technology has exceptionally low latency and higher throughput, making it a good
fit for hot data at a price premium. While all these device classes expose the same
well-known interface for storing and retrieving data, it is already challenging for



6 Scaling Beyond DRAM Without Compromising Performance 147

0

5

10

15

20

0 1000 2000 3000
Price [$]

Ca
pa
ci
ty

[T
B] Technology

HDD
OPTANE
SSD (NVMe)
SSD (SATA)

Fig. 6.1 Price of different storage media in relation to capacity

database systems to exploit the unique benefits of a single device class.1 Preferably,
a database system should use multiple device classes to maximize performance for
a given budget, which is especially relevant in a cloud setting where one pays by the
hour.

New Storage Technologies Technological advancements have introduced device
classes that blur the line between storage and memory. Intel’s Persistent Memory
(PMem), for example, offers throughput and latency in the same order of magnitude
as DRAM while storing data persistently, i.e., it retains stored data on power loss,
unlike DRAM. While PMem’s low write latency and high throughput have imme-
diately apparent performance benefits for existing database systems, unlocking its
full potential requires careful rearchitecting of existing systems: Since it is byte-
addressable like traditional DRAM, writes can theoretically be persisted atomically
and thus do not have the issues of traditional block-based interfaces like those used
by SSDs or HDDs, whose larger block sizes mean applications have to account for
torn writes or buffered data that is lost on a crash. This allows new database design
approaches to eschew write-ahead logs if designed carefully.

1 Intel’s Optane Persistent Memory has two modes of operation: Memory Mode and the App Direct
Mode (ADM). The ADM offers byte-addressable access to persistent memory using regular file
systems supporting DAX, making persistent memory share a common interface with common
storage devices.
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Disaggregated Memory DRAM has become an important cost factor in data
centers (e.g., DRAM accounts for 50% of Azure’s servers [16] and 40% of
Meta’s rack costs [33]). At the same time, applications are overprovisioned fixed
with memory resources to accommodate peak workloads, leading to significant
underutilization of memory resources on average of only 50–65% [32, 47]. To
mitigate the limits on DRAM capacity per socket and to improve utilization, data
centers have started to disaggregate the memory resources by connecting multiple
machines over high-speed interconnects. While memory disaggregation improves
utilization, it significantly impacts application performance and requires careful data
placement.

Arrival of ARM The x86-64 architecture has dominated the server and desktop
market over the last decades. It is the main platform for compute-intensive
workloads like database systems, high-performance computing, or data analytics.
Following Moore’s Law, the performance x86-64 increased constantly over the
years. However, there was a slowdown in growth similar to stagnating DRAM
capacities. At the same time, the ARM architecture (formerly only used for mobile
and embedded applications) started to push in the x86-64-dominated markets,
offering an energy-efficient alternative for computation with high performance.
In addition, ARM processors offer new flexibility for accessing memory: i.e.,
ARM provides instructions reflecting the increased control within a weak memory
ordering model. That combination of high-performance computation, the integration
in all stacks of modern data centers, and flexible memory management makes ARM
an integral part of addressing the challenges of modern data-intensive applications.

6.1.2 Our Contributions

This chapter explores taking advantage of the abovementioned opportunities while
mitigating the challenges. To this end, we propose four different systems.

Mosaic is a storage engine designed to accelerate analytical workloads [52]. To
make the most use of the modern storage zoo and fast SSDs, it manages devices in a
tierless pool and provides purchase recommendations for a specified workload and
budget. Consequently, Mosaic enables system administrators to utilize the many
available storage device types with varying throughput and costs for analytical
workloads. With Mosaic, we show that higher query throughputs at the same budget
as state-of-the-art approaches are possible, or the user can choose similar query
throughputs at a lower storage cost than existing solutions.

Plush is a storage structure optimized for transactional workloads and exploits
PMem’s low write latency, demonstrating how software can be designed to adapt to
breakthroughs in storage technology [51]. It is a write-optimized hybrid hash table
for PMem with support for variable-length records and complete crash consistency,
able to replace the storage engine in a key-value store. Plush plays to PMem’s
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strengths of DRAM-like performance, byte addressability, and the persistency
guarantees of conventional block storage.

PMFDS is an envisioned programming model that would facilitate the sustainable
development and optimization of data-intensive applications for fully disaggregated
systems and modern hardware [4]. To achieve sustainable development and to
become more independent of future development of memory device types, PMFDS
adopts a memory-centric approach based on memory regions to abstract from
hardware details. A runtime system co-optimizes data and task placement and maps
the memory regions to the most suitable devices at execution time and assigns tasks
to computational devices.

FireARM is a just-in-time compilation framework for database systems that puts a
strong emphasis on low-latency compilation and high code quality [23]. FireARM
translates the domain-specific intermediate representation Umbra IR orders of
magnitude faster to ARM machine code than existing compilers like GCC and
LLVM. At the same time, the performance of code generated by FireARM is nearly
on par with compiler optimized code and can compete with the performance of
x86-64. Since FireARM has a small resource overhead compared to larger compiler
frameworks, it is not only suitable for high-end ARM servers but also for smaller
edge-like devices.

6.2 Mosaic

As explained earlier, storing all data on DRAM is prohibitively expensive for
medium-sized datasets and impossible for large datasets. Storing all data on fast
storage devices (i.e., NVMe SSDs) works, as one can easily attach hundreds of TiB
of such storage to a single server via PCIe, but this also becomes expensive quickly
and needlessly wasteful: Most data is usually seldom accessed (i.e., cold) and could
thus in theory be stored on much cheaper, larger, but also slower HDDs without
impacting performance while saving money.

In practice, traditional DBMS are unsuitable for this task as they have been
built with a specific device class in mind (e.g., HDDs for PostgreSQL, SSDs for
Umbra [36], or SAP HANA for DRAM [21]). At best, they allow users to choose a
storage location per table (i.e., at table granularity) via crutches such as table spaces.
This coarse granularity, however, is far too coarse-grained for modern analytical
workloads: Some columns of a table are usually accessed disproportionally more
often than others, resulting either in bad performance—if the whole table, including
frequently accessed columns, is stored on a slow device—or high costs, if the whole
table, including seldom-accessed columns, is stored on a fast but expensive device.
Furthermore, even if the user could place columns independently, it is not apparent
how to make the best placement decisions: If even just one column accessed by
an often-run query is stored on a slow device, all other data scanned by this
query wastes valuable storage space of a faster device. Since different queries scan
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different subsets of the data, one has to keep track of a lot of interdependencies
when choosing an optimal data placement for a given workload and cannot rely on
a simple hot-cold classification. Mosaic fixes this problem by offering help during
all stages of the deployment process [52].

Before Hardware Is Purchased Mosaic acts as a storage device purchase rec-
ommendation system, as shown in Fig. 6.2: Given a list of devices available for
purchase, a description of the dataset’s properties, and a set of queries assumed to
be representative of the later workload, Mosaic gives purchase recommendations for
arbitrary budgets. Each recommendation is guaranteed to be Pareto optimal, i.e., no
other configuration is faster while also being cheaper.

After Purchase Given the trace of a typical set of queries and storage devices,
Mosaic places data optimally to maximize throughput. Mosaic can work with any
set of storage devices, not only those bought based on its recommendations. Data
can also be re-distributed should workload patterns change.

During Operation Mosaic acts as a pluggable storage engine component for any
columnar relational database system.

6.2.1 Placement Mechanism

To place data optimally, Mosaic makes use of one simple observation shown in
Fig. 6.3. Under the assumption that queries are bottlenecked by I/O, the runtime is
always determined by the throughput of the storage device taking the longest to
read all columns required for the given query. To minimize the runtime of an (I/O
dominated) workload, Mosaic thus has to find a data placement that minimizes the
time devices are idling. Instead of imperfect heuristics, Mosaic uses a mathematical
model to predict database performance for a given data placement. It then employs
a constraint solver using linear programming to optimize for the best placement
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decision while fulfilling the constraints the user has provided. This model is shown
in Eq. 6.1 and predicts how long a single table scan will take. Since we assume the
workload is I/O dominated, summing all table scans within a workload will give us
the overall workload runtime.

tTScan = max

⎧
⎨

⎩

∑

c∈cols(TScan)

I (d, c) · size(c)

tpt(d)

∣
∣
∣
∣ d ∈ Devices

⎫
⎬

⎭
(6.1)

In this equation, I (d, c) is an indicator function evaluating to 1 if the column c is on
device d and to 0 otherwise.

This model is just a more rigorously formalized version of the observations of
Fig. 6.3: For each device, we calculate how long it takes to scan all the requested
columns (i.e., the columns for which I tells us that they are on the given device).
We then return the time of the device taking the longest.

With this formalization, we can now instruct a constraint solver to define the
indicator function I so that it assigns each column to exactly one device while
minimizing tTScan. To ensure that Mosaic observes our budget constraints and does
not just place all data on an array of really fast but expensive storage devices, we
add the constraint shown in Eq. 6.2 that ensures that the total device budget stays
below the budget costmax the user is willing to pay.

costmax ≥
(

∑

d∈Devices

∑

c∈Cols

I (d, c) · cost(d) · size(c)

)

(6.2)

By re-running the constraint solver at different budgets, Mosaic can generate a
Pareto-optimal curve of hardware to buy. If the user has already purchased hardware,
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Mosaic drops the cost constraint but adds additional constraints that ensure no
device is overfilled.

6.2.2 Evaluation

To evaluate Mosaic, we have built an evaluation system comprised of three different
device classes (see Table 6.1). We then import a trace of the TPC-H benchmark
executing queries 1 to 22 once in sequence. Afterward, we let Mosaic place the
dataset strategy for different budgets. After data placement, we measure the runtime
of the benchmark. As a baseline, we benchmark all possible options when placing
data at table granularity. Figure 6.4 shows the results. Each triangle represents
a configuration a user could have achieved manually by placing data at table
granularity. We highlight the three configurations where all tables are completely
on HDD, SATA SSD, or NVMe SSD. Some configurations are strictly better than
others. The dashed line indicates the Pareto optimal front, i.e., all configurations for
which no cheaper and faster alternative exists. This line thus indicates the best an
experienced system administrator could have done with legacy database systems.

Conversely, Mosaic can find much more fine granular data placements, as
indicated by the dotted line. It provides far superior performance at the same budget
or allows the user to save considerable costs without impacting performance.

Table 6.1 Storage devices of
the evaluation system

Device Price per GB Throughput

NVMe PCIe SSD 125 ct 2.10 GB/s

SATA SSD 60 ct 0.41 GB/s

RAID 5 of HDDs 45 ct 0.32 GB/s

NVMe SSD only

SATA SSD onlyHDD only
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Fig. 6.4 Performance of Mosaic compared to manual data placement
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6.3 Plush

While Mosaic can efficiently utilize many different storage device types, one
technology is suspiciously missing: Persistent Memory (PMem). It promised to
combine DRAM-like throughput, latency, and byte addressability with storage-
like persistency. However, some issues became apparent when it finally became
generally available, as demonstrated by Table 6.2. While PMem’s latency is within
reach of DRAM, its throughput is closer to that of a reasonably fast SSD. Even
though this low throughput provides some challenges (as one can outmatch it by
writing to multiple SSDs in parallel for far cheaper), it is offset by its amazingly
low write latency, which existing storage hardware cannot achieve. The unparalleled
write latency makes PMem especially attractive to workloads that repeatedly persist
small amounts of data (i.e., latency-bound workloads), as is common with key-value
stores.

6.3.1 The Problem with Persistent Memory

However, even for those workloads, PMem has a problem to overcome, pictured
in Fig. 6.5: Write amplification. To ensure that PMem has safely persisted newly
written data, the data has to be evicted from the volatile CPU cache to the physical
PMem medium. The CPU cache is internally organized into cache lines sized 64
bytes. Data thus can only ever be updated in 16-byte increments. When a smaller
range of data is written (i.e., a 16-byte record consisting of an 8-byte key and an 8-
byte value), it thus takes the same time as if a contiguous 64-byte record was written,

Table 6.2 Write access characteristics for different media

Medium Latency Bandwidth Price Access unit

DRAM 90 ns 80 GB/s 7.2 $/GB cache line (64 B)

PMem 130 ns 6.5 GB/s 4.0 $/GB block (256 B)

SSD ≥1,000,000 ns 3.4 GB/s 0.3 $/GB page (4KiB)

K/V entry (16B)

Cache line (64B)

PMem block (256B)

4× amplification

4× amplification

Fig. 6.5 Writing records to PMem: Up to 16× write amplification
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resulting in a write amplification of 4× (i.e., four times as much data as the payload
was actually written). PMem is internally organized in 256-byte blocks, so each
block consists of 4 cache lines, leading to another 4× write amplification. Persisting
a single record to PMem thus incurs a write amplification of up to 16× if we assume
random accesses. Even though PMem has that attractively low write latency, which
should make it predestined for small random writes, its low bandwidth is quickly
eaten up by high write amplification. To investigate this effect and find solutions, we
build Plush, a Persistent Log-StrUred haSH table that minimizes write amplification
while exploiting PMem’s low write latency.

6.3.2 Architecture

We built Plush [51] on the central observation that to minimize write amplification,
one must write to PMem in 256-byte blocks. This need for block size optimization
conceptually differs from the traditional approach for storage, where writing large,
contiguous sequential chunks is optimal. For example, HDD- and SSD-optimized
log-structured merge (LSM) trees put up with a lot of CPU overhead to sort data
into runs, which pays off when multiple such sorted runs are merged and written
back to disk with a sequential write pattern, reducing write amplification.

Since PMem already reaches its full throughput with 256 byte writes, Plush
forgoes the traditional sorting approach of LSM trees and employs a hashtable
approach, as shown in Fig. 6.6 instead. Plush consists of multiple hash tables of
growing size, with the smallest one residing on DRAM. Plush uses the key’s hash
when inserting to determine which DRAM bucket the record is to be inserted ( 2 ).
To minimize write amplification, Plush employs 256 bytes large buckets. Whenever

DRAM PMEMinsert(key,val)

h(key) = . . . 10

2

3

110

4

010

1 Recovery logs

lookup(key) h(key) = . . . 111
a

b

c

d

Fig. 6.6 Plush’s architecture with illustrated insert ( 1 – 5 ) and lookup algorithms ( a – d ). The
colored lines represent steps in the algorithms, and the black lines are pointers of the data structure
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a bucket is full, Plush appends it to a chain of buckets in a PMem hash table of
the same size ( 3 ), guaranteeing no write amplification is happening. All buckets
are re-hashed once this chain is full and inserted into the next larger hash table on
PMem ( 4 ). Plush ensures that the chain length is a multiple of the number of bins
the buckets are re-hashed into. This ratio ensures that for each bin on the next level,
an approximate multiple of 256 bytes is written, keeping write amplification low.

This approach has a huge drawback: Records that Plush has written to DRAM
but not yet migrated to PMem will be lost upon a system crash. To ensure all data is
persisted instantly, Plush thus first writes the record to a recovery log ( 1 ). Keeping
a recovery log in PMem seems counterintuitive as this results in many writes smaller
than 256 bytes, increasing write amplification. However, since Plush populates these
logs sequentially, it can employ the PMem medium’s small but fast write combining
buffer, which holds data until a whole block is complete. The PMem memory
controller then writes the whole block to the medium. Plush truncates the log when
it can guarantee that it has flushed all records stored within to PMem.

For lookups, Plush has to subsequently look into each level ( a – c ) until it has
either found the key or has exhausted all levels. Since most keys are expected to be
on the last level, Plush employs bloom filters in each hash table’s index to speed up
negative lookups ( d ).

6.3.3 Evaluation

Our evaluation system uses a 24-core Xeon Gold 6212U CPU (48 logical cores). It
has access to 192 GB (6 × 32 GB) DRAM and 768 GB (6 × 128 GB) of Intel’s first-
generation PMem DIMMs. We compare Plush against nine indexes listed, four of
which are hash tables (Dash [8], PmemKV [40], Viper [9], FASTER [13]), while the
other five are treelike data structures (μTree [14], FPTree [38], FAST+FAIR [26],
DPTree [53], RocksDB [39]). Plush combines aspects of both approaches, allowing
us to compare different trade-offs made by each approach.

In the first experiment, we preload 100 million 16-byte records consisting of 8-
byte keys and values. Keys are uniformly distributed. We then execute 100 million
operations for varying thread counts. Figure 6.7 shows the results. For lookups
(Fig. 6.7a), Plush is in the middle of the pack. Since it behaves somewhat treelike
(i.e., a lookup has to search each level with most records statistically residing on the
last level), it has a considerable disadvantage over the hash table implementations
but keeps up with the other trees. However, Plush shines when inserting or updating
records (see Fig. 6.7b). Thanks to its lower write amplification, it can utilize PMem’s
low bandwidth far better than other data structures.

Another critical aspect of PMem-optimized data structures is their space con-
sumption. One of PMem’s selling points was that one can install significantly more
PMem capacity per CPU socket than DRAM capacity since each PMem DIMM can
hold up to 512 GiB of data. However, almost all data structures also use DRAM
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Fig. 6.8 Plush’s DRAM consumption compared to the size of the dataset

for data that they can reconstruct if a crash happens. FPTree, for example, stores its
inner nodes on volatile DRAM and rebuilds them after a system crash.

Figure 6.8 shows the DRAM consumption of the data structure plotted against
the dataset size (i.e., the useful payload supposed to be stored on PMem). Here,
most data structures’ DRAM consumption scales linearly or even superlinearly with
the payload size. Especially Viper, μTree, and DPTree store most of their data in
DRAM. They thus cannot scale with the amount of installed PMem, obsoleting one
of its advantages. Plush, however, only uses a static amount of DRAM, taking the
second spot in DRAM consumption after Dash, a PMem-only data structure. Plush
is, therefore, able to profit from DRAM but is not limited by the amount of installed
DRAM and can thus scale to arbitrary amounts of installed PMem.

Overall, Plush demonstrates that there is a lot to gain by optimizing for low
write amplification on PMem. It is competitive with other PMem-optimized data
structures for lookups while significantly outclassing them for inserts. It enables
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users to perform millions of operations per second in a crash-consistent manner,
which was previously impossible.

6.4 Programming Fully Disaggregated Systems

The modern hardware landscape for large-scale data processing has become highly
complex over the last few years, which makes it challenging for developers to
fully exploit their potential. In the following, we elaborate on six trends that were
previously described in more detail [5]. These trends contribute to the hardware
landscape’s complexity and then discuss the key design principles for a new
programming model that would facilitate the implementation of data-intensive
applications and their optimization for modern hardware.

6.4.1 Trends in Large-Scale Data Processing

Trend 1: Hardware Specialization For decades, Moore’s law, Dennard’s, and
Amdahl’s scaling have effectively predicted and modeled the exponential growth
in computational power. This increase in processing capabilities has facilitated
the rapid analysis of vast datasets. However, as modern processors are currently
approaching their physical limits, we observe a push toward specialized compute
devices [25], like GPUs and TPUs, which offers a pathway for developers to create
more energy-efficient data-processing pipelines with higher performance. These
advantages, however, come at the expense of increased complexity in software
development.

Furthermore, it becomes impractical to store large datasets entirely in DRAM.
In response, emerging memory technologies like Persistent Memory (PMEM) are
being integrated into today’s processor-centric architecture, further complicating the
landscape of modern memory architectures, as depicted in Fig. 6.9a.

Trend 2: Data Explosion Concurrently, stagnating DRAM prices coupled with
the explosive growth in data volume—projected to exceed 175 zettabytes by the
year 2025 [44]—put significant pressure on data-processing systems. To achieve
high-performance data processing on rapidly growing data volumes, an increasing
number of users are moving to cloud computing solutions, which offer highly
flexible spot instances and provide high-performance data-processing capabilities
that can scale dynamically with the increasing data volumes.

Trend 3: Cloud Computing Dynamic random access memory (DRAM) is an
important cost factor in data centers (50% of Azure’s servers [16] and 40% of
Meta’s rack costs come from memory [33]). However, as more data systems
move to the cloud, where they run in containers with fixed memory and compute
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Fig. 6.9 Moving from a compute-centric to a memory-centric architecture [4]. (a) Processor-
centric architecture. (b) Memory-centric model

resources, the average memory utilization is reported to be only between 50 and
65% on average [32, 47]. This is because of the containers’ “over-provisioning”
with memory and compute resources to reliably serve peak workloads.

Trend 4: Disaggregated Memory Therefore, disaggregated memory has emerged
as a promising solution to enhance resource utilization. Disaggregated architectures
use fast networks [7, 41] to interconnect computing [6, 10–12, 18, 27, 28, 43] and
memory resources [2, 15, 20, 49] of different machines, thereby creating larger and
more flexible resource pools.

Trend 5: Data Movement While disaggregated memory architectures address the
problems of underutilized memory resources, they also introduce new complexities
and problems concerning data placement. Poorly placed data within the disaggre-
gated memory pool can lead to substantial latencies and might require expensive
data movement to transfer data closer to the computational device [29, 41].

Trend 6: Cache-Coherent Interconnects The complexity within the computing
landscape is further increased by recent advancements in data center processors, like
Intel’s 4th Generation Xeon� Scalable Processors [1] and AMD’s 4th Generation
Epyc processors [3].

They adopt Compute Express LinkTM (CXLTM) [15], a new cache-coherency
protocol based on PCIe 5.0. CXLTM has been adopted by many industry-leading
companies and will potentially facilitate the development of PCIe-attached memory
expansion cards. The first cards have already been announced by Micron [34]
and Samsung [45], contributing to a more diverse and complex memory device
landscape. Table 6.3 shows attributes like bandwidth, latency, and access granularity
for different memory types as seen from a CPU. Developer must know these
properties to optimize their software applications.
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Table 6.3 Selected properties of memory devices as perceived from a CPU [4]

Name Bandwidth Latency Access granularity Sync Persist

HBM ++ + 64 B ✓ ✗

DRAM + + 64 B ✓ ✗

PMem ◦ ◦ 256 B ✓ ✓

CXL-DRAM ◦ ◦ 64 B ✓ / ✗ ✓ / ✗

SSD − − 4 KiB ✗ ✓

HDD −− −− 4 KiB ✗ ✓

A New Memory-Centric Programming Model It is unclear how developers can
sustainably leverage the potential that modern hardware offers. Furthermore, the
available hardware accelerators and memory types are often known only at execu-
tion and not yet during development and compile time. These trends collectively
motivate a new programming model that abstracts from the hardware advancements
and facilitates the sustainable development and optimization of data-intensive
applications. Trends 4 and 5 have highlighted that memory-related costs are the
primary concern in developing data-intensive applications at data center scale. To
minimize data movement, we envision a memory-centric programming model as
shown in Fig. 6.9b. In the following, we discuss the key design principles of the new
programming model.

6.4.2 Design Principles

We propose several key design principles for a new programming model for fully
disaggregated systems (PMFDS). To make the programming model applicable to a
broader range of applications, we generalize and represent them as dataflow graphs.
Dataflow graphs are directed acyclic graphs whose nodes are computational tasks
and arrows denote the data flow between tasks. This generalization works well
for various application types, including database query plans and AI/ML pipelines.
Figure 6.10 shows an example of a dataflow graph.

Abstracting from Physical Memory Devices Through Memory Regions As
shown in Table 6.3, the hardware landscape comprises various memory device types.
Furthermore, CXLTM facilitates the development of new device types and enables
new data- and compute placement options, thereby increasing the optimization
space and complexity. However, at development time, it is often unknown what
memory devices are available at execution time. Rather than assigning data to
particular memory devices in advance for a given task t , we argue to select the
memory device based on the specific requirements, such as bandwidth or latency,
needed by t .

Therefore, we propose a memory-centric design based on memory regions 1

that abstract from memory devices. As depicted in Fig. 6.11, every memory region
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Fig. 6.11 Memory regions are defined with declarative properties and abstract from physical
memory devices. The runtime system maps the regions to physical devices at execution time

can be assigned declarative properties like bandwidth or latency requirements
( 2 and 4 ). At runtime, more information about the available memory devices and
their utilization is known to better map memory regions to hardware devices 3 .
Also, other frequently required functionalities, such as the encryption of sensitive
data, can be declared by attaching properties to the memory region. This approach
simplifies the application development by abstracting away much of the complexity.

Typed Memory Regions In most data-intensive applications, memory is primarily
used for synchronizing threads, exchanging data, and enabling fast thread-local
computations. Our programming model introduces typed memory regions, which
are predefined first-class entities to facilitate these tasks and ease adoption:

- Global State: coherent and synchronous memory, for synchronizing tasks
- Global Scratch: coherent and asynchronous memory, for data exchange
- Private Scratch: non-coherent and synchronous memory, for thread-local com-

putations
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Fig. 6.12 The runtime system co-optimizes data and compute placement and maps the memory
regions to actual memory devices [4]

Memory Region Ownership Memory regions can hide hardware complexity
but also introduce questions of ownership and cleanup responsibility for regions
that are no longer used. These issues can be efficiently addressed by adopting
principles from modern languages like Rust and C++11, specifically smart pointers.
The cleanup responsibility falls to the last task holding ownership. Furthermore,
memory region ownership can provide valuable information to the runtime system’s
optimizer to improve data placement.

Runtime System The proposed programming model necessitates a runtime system
(RTS) to implement the concepts of memory regions and ownership. Additionally,
the RTS optimizes task and data placement. Placement decisions are deferred to
runtime to leverage detailed information on hardware availability and utilization,
which is crucial in cloud environments where resources are dynamically allocated.
The interdependence of task and data placement is illustrated in Fig. 6.12, highlight-
ing how the processing devices influence the choice of optimal memory devices
for data. For example, if a task runs on the CPU, binding the memory regions
to the socket-local DRAM results in lower access latency and higher bandwidth.
Conversely, when the task runs on the GPU, execution time benefits from mapping
the memory regions to the GPU’s local GDDR memory.

Future Work There is much potential for future work in cost-based optimization
of memory mapping in heterogeneous systems. This could involve examining the
hardware topology and its effects on access latency and bandwidth, as well as the
handover of memory regions between tasks. Furthermore, recent work showed that
query execution could benefit from heterogeneous device-parallel executions [31].
For example, they found that scheduling tasks should not be a binary decision
between CPU and GPU.
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6.5 ARM: Code Generation for High-End and Edge Devices

Since Hyper [35], query compilation has emerged as the key technology for
substantial performance improvements in data processing, and many database
systems [19, 22, 24, 30, 37] and data-processing systems [17] shifted toward
machine code compilation. Most systems focused on the x86-64 architecture due
to its dominance in the server segment and because powerful ARM processors
were not broadly available. The ArmV8 architecture, which drives most modern
ARM-based processors, was announced in 2011, and the first core designs (e.g., the
Cortex-A53 also used for the Raspberry Pi) were shown in 2012. However, powerful
ARM processors started pushing into the desktop and server market, starting with
Apple’s M series and Amazon’s Graviton line. Modern ARM processors achieve
performance comparable to the established x86-64 competitors or surpass them,
making ARM now a valid choice for query compiling systems.

6.5.1 Query Compilation

In the last decade, various compilation approaches that satisfy different require-
ments regarding compilation latency, performance, and portability emerged. Some
database systems compile SQL queries by translating them to C or C++ programs
that are then compiled with GCC or LLVM [19]. In contrast, others directly
translate query plans to intermediate representations (IRs) [35]. With the Umbra
database system, we developed a system with a strong focus on low compilation
overhead and maximum tuple throughput for in-memory workloads [37]. Since
existing compiler infrastructure like GCC or LLVM did not meet our requirements,
we implemented a new ARM-specific compilation backend called FireARM [23].
FireARM generates ARM machine code a magnitude faster than non-optimizing
LLVM-JIT while achieving similar or better code quality, as we showed in our
previous publication [23]. FireARM thus has a minimal resource overhead, making
it suitable for high-end processors and less-powerful, edge-like processors.

6.5.1.1 Architectural Challenges

Changing the target architecture for code generation using GCC or LLVM is
straightforward because the compilers do all necessary tasks like lowering or
instruction selection. However, that requires high-level languages like C or C++
to express queries or internal compiler IRs like GCC Gimple or LLVM IR. With
a focus on low-latency compilation, such approaches are suboptimal, so a custom
query program abstraction like Umbra IR and an IR-specific code generator are
used. Umbra IR is a domain-specific IR designed for low-latency code generation
in database systems inspired by LLVM IR. However, Umbra IR implements
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database-specific IR optimizations to simplify the expression of database operators,
making code generation less complex than LLVM IR. While that technology was
already designed and implemented for x86-64 systems in the Umbra, support
for the ARM architecture required a new code-generation layer called FireARM.
Unfortunately, our internal IR was optimized for efficient code generation for x86-
64, implementing constructs that make code generation for other architectures more
complex. That earlier focus on x86-64 and the architectural differences between
x86-64 and ARM made the implementation of FireARM non-trivial.

While ARM uses a weak-ordering consistency model [42], x86-64 features a
processor-ordering consistency [46]. Except for explicit atomic store operations that
require sequential consistency, the ordering of reads and writes does not concern
developers on x86-64. Load and store operations with relaxed or acquire-release
semantics have the same ordering on x86-64. In contrast, ARM offers fine-graded
control over the ordering of memory operations. That flexibility allows multiple
optimizations but must be handled carefully because wrong ordering semantics
can degrade the performance on ARM. Furthermore, it affects the correctness of
database pipelines by implementing wrong or insufficient barrier semantics on
ARM.

While memory ordering is more flexible, the ARM instruction set is more
restricted than the instruction set of x86-64. Most memory accesses (e.g., operand
loads or operand stores) must be done in explicit operations and cannot be fused into
arithmetic instructions, as is the case on x86-64. Since ARM has a fixed instruction
encoding length of 32 bits, the encoding of immediate operands is also limited,
leading to bloated machine code for immediate-heavy workloads.

Like our code generator for x86-64, FireARM does not optimize for specific
processor models. Such an approach is sufficient on x86-64 because the vendor
differences in processor behavior between AMD and Intel are marginal. However,
various ARM core designs from different vendors have individual performance
characteristics. While such optimizations can increase performance significantly,
the implementation complexity of the code generator grows proportionally, making
custom code generators like FireARM not maintainable anymore.

Those and other challenges (e.g., the limited operand bit width or strict mem-
ory alignment requirements) make the just-in-time generation of high-performant
machine code on ARM more complex than on x86-64. Nonetheless, FireARM
shows that it is possible to tackle those challenges while satisfying the requirements
regarding compilation and code quality.

6.5.1.2 Code Generation Evaluation

To evaluate the performance characteristics of different compilation strategies in
terms of compilation time and tuple throughput (i.e., quality of generated machine
code) on ARM, we used the TPC-H benchmark and the Umbra database system.
Since all code-generation backends start with the same Umbra IR programs (e.g.,
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Fig. 6.13 The tuple throughput and the compilation time of different query compilation
approaches in the Umbra database system using the TPC-H benchmark. Compilers like GCC and
LLVM produce slightly better code (offering better performance), but compilation takes orders of
magnitude longer. (a) Apple M1 (8 Cores, 16 GB, sf = 10). (b) AMD Ryzen 7 4750U (8 Cores,
32 GB, sf = 10). (c) Graviton 3 (64 Cores, 128 GB, sf = 30). (d) AMD Epyc 7713 (64 Cores, 1 TB,
sf = 30)

same query and execution plans) to generate ARM machine code, the performance
results are comparable.

Figure 6.13 shows an excerpt of our extensive benchmark evaluation that
was previously published in [23]. We analyzed the performance of the different
compilation strategies on consumer hardware (e.g., Apple M1 and Ryzen 4750U)
and state-of-the-art server hardware (e.g., Amazon Graviton 3 and Epyc 7713)
on ARM and x86-64. Our results show similar patterns for compilation time and
dimensions for tuple throughput on both architectures, showing the potential of
modern ARM processors.

Compilation Time The query compilation time of LLVM and GCC is slightly
faster on ARM than on x86-64. We argue that the implementation of the
architecture-specific machine code generation pass for ARM is newer and better
structured than the old code base for the x86-64 architecture, so code generation for
ARM is slightly faster. However, on the Apple M1, FireARM shows a larger variety
for the compilation time than other code-generation strategies and processors. That
is due to the efficiency cores of the Apple M1, as query compilation done on the
less-powerful efficiency cores is slow. We expect that with the increasing number of
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processors implementing a combination of performance and efficiency cores, other
ARM and x86-64 processors will show similar performance patterns.

Tuple Throughput All code-generation strategies achieve multiple orders of mag-
nitude higher tuple throughput than virtual machine-based interpretation. However,
optimized GCC and LLVM code still performs slightly better than FireARM. The
difference between a limited set of optimizations (LLVM opt) and the application of
all available optimizations (GCC O3) is marginal. We argue that the better instruc-
tion selection between optimized and unoptimized GCC and LLVM compilation is
the reason for achieving better code quality than FireARM.

6.5.2 Embedded ARM Processors

While ARM pushes in the desktop and server market, most ARM-based processors
are designed for mobile or embedded applications. Computational storage devices
like the Catalina SSD [48] integrate energy-efficient ARM coprocessors not com-
parable to Apple’s M-series or Amazon’s Graviton line. However, those embedded
ARM processors still allow systems to offload work to devices, so memory and
compute resources on the host can be saved. A Catalina SSD uses four Cortex
A53 processors with 8 GB of device main memory and runs an independent Linux-
based operating system. Those specifications are similar to the Raspberry Pi 4 we
evaluated for query compilation in Umbra [23]. Figure 6.14 shows the compilation
time and the tuple throughput for the TPC-H benchmark with scale factor 5 in a
best-case scenario (e.g., all data in memory). While benchmarks show that code
generation enables impressive data processing on edge-like devices, performance is
orders of magnitude worse than entry-level consumer hardware (e.g., Fig. 6.13b).

Fig. 6.14 The compilation time and the tuple throughput of different compilation strategies in
Umbra on a Raspberry Pi 4 with 8 GB main memory using the TPC-H benchmark with scale
factor 5. (a) Compilation latency. (b) Tuple throughput
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Offloading operations like table scans and filtering to computational storage
seem reasonable for compiling in-memory systems to save host resources. However,
the performance of the embedded processor becomes the bottleneck. While the
embedded ARM processor can access the SSD flash storage with full speed and
the lowest possible latency, the memory for intermediate results is limited, and the
TCP/IP-based data exchange with the host system introduces additional overhead.
While the direct access to the SSD device from the host is limited to the bandwidth
of PCIe Gen3, the performance without the offloading of filter operations to the
ARM processor was still better.

Future smart storage devices may integrate more efficient processors and a
higher amount of device memory, tackling the limitations of the Catalina SSD. Fur-
thermore, new interconnect technologies like CXL.mem could allow low-overhead
data exchange between device and host memory. Tackling those limitations for
accelerators makes offloading computation to ARM processors a valuable option
for compiling database systems.

6.6 Conclusions

This chapter introduced four innovative concepts designed to enable data-intensive
systems to scale beyond DRAM without compromising performance. Mosaic is
a storage engine that manages a tierless pool of memory and storage devices.
Given specified workloads and budget constraints, it recommends what database
tables and columns should be placed on what devices. We have shown that Mosaic
can effectively improve the overall system performance on modern heterogeneous
storage setups. Plush is a new write-optimized hybrid hash table for persistent mem-
ory that optimizes transactional workloads and supports variable-length records
and crash consistency, showing how novel memory technologies can overcome
limited DRAM capacities. We introduced PMFDS, a new programming model
that facilitates the implementation and optimization of data-intensive systems for
today’s increasingly heterogeneous and disaggregated hardware landscape. Given
the shift toward heterogeneity not only in storage but also in processing devices,
like ARM, we examined how established data-processing methods like just-in-time
compilation can be adapted to new processor architectures.
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Abstract The available parallelism and heterogeneity of emerging computer sys-
tems must be exploited for being able to process the huge amounts of data produced
every day. As a consequence, we observe an increasing research interest in accel-
erating database query processing on multi-cores and attached co-processors like
Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays (FPGAs).
This chapter presents ReProVide, an approach combining near-data processing and
FPGA-based acceleration. The System-on-Chip (SoC) architecture of ReProVide
including a flexibly reconfigurable FPGA can load and execute hardware acceler-
ators for various operators on relational and streaming data. Moreover, we present
novel DBMS techniques for partitioning query-execution plans between a host and
Reconfigurable data-Provider Units (RPUs) and for mapping operators onto RPUs
by means of hardware reconfiguration.

7.1 Introduction

The exponential growth in the volume, velocity, and variety of data gathered on
servers all around the world poses immense challenges. Analyzing petabytes of
data with an affordable amount of time and energy requires a massively parallel
processing of data at their source. Active research is therefore directed toward
emerging hardware architectures to reduce data volume early and toward sound
query analysis and optimization techniques to exploit such novel architectures.
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Fig. 7.1 Overview of a ReProVide cluster (left) where multiple RPUs are connected to a host,
which schedules multiple applications (as shown by example right) on the cluster. RPUs can
process relational data originating from local storage devices as well as ingress streaming data
from external sources

The goal of ReProVide (Reconfigurable Data ProVider) as illustrated in Fig. 7.1
is to investigate FPGA-based solutions for smart storage and near-data processing
together with novel query-optimization techniques that exploit the speed and
reconfigurability of FPGA hardware for a scalable and powerful (pre-)filtering of
Big Data.

ReProVide is based on clusters of FPGA-based Programmable System-on-
Chip (PSoC) architectures called Reconfigurable data-Provider Units (RPUs) (see
Fig. 7.1, left). RPUs can serve as storage-attached devices, with direct interfaces
to a multitude of memory and storage types (e.g., SSDs), but also network-attached
devices to process ingress streaming data from external sources. For data processing
and filtering, an RPU exploits the capabilities of dynamic (runtime) hardware
reconfiguration of modern FPGAs to load pre-designed hardware accelerators on the
fly. ReProVide is able to process user-defined queries or parts thereof in hardware
in combination with CPU cores also available on the PSoC. Query-specific filtering
provided by RPUs establishes the basis for drastically shrinking the huge amount of
data already at its source, thus reducing the dominant factor of energy consumption
in data-center networks: data transport.

For the integration of RPUs into a DBMS and exploiting their potential, we
present novel optimization techniques for multiple objectives including end-to-end
latency, throughput, and energy consumption of query processing. These determine
which operations are worthwhile to be assigned to an RPU (see Fig. 7.1, right) by
applying adequate cost models that take the capabilities and characteristics of an
RPU into account. Moreover, the optimizer decides how to deploy and execute the
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assigned (sub-)queries or database operators on hardware accelerators, which are
then mapped onto RPUs by means of hardware reconfiguration.

This chapter gives an overview of the underlying concepts of ReProVide.
After presenting the related work in Sect. 7.2, Sect. 7.3 summarizes the hardware
architecture of RPUs and how to use them for query-specific operation. Section 7.4
gives details of near-data processing of streaming data on RPUs. Section 7.5 then
introduces the developed optimization techniques for managing queries in clusters
consisting of multiple RPUs. Finally, Sect. 7.6 evaluates a hardware setup for near-
data processing before the summary in Sect. 7.7.

7.2 Related Work

FPGAs are promising target architectures for modern query processing (see, e.g.,
[24]). This is facilitated by being able to implement parallel and deeply pipelined
hardware circuits that are highly optimized for specific operations. At the same
time, it is possible to exchange hardware modules at runtime to adapt the FPGA
to changing queries and accelerate various query operators. There exist different
approaches to using FPGA as accelerators for query processing (see also [24]). They
can be directly attached to CPUs as co-processors, as, e.g., proposed in [38, 42, 57],
and [21]. The CPU is responsible to transfer the data to the local memory of the
FPGA, which can then process this input. However, as the size of the local memory
is limited, multiple transfers may be required for calculating final results. This
design choice is therefore inefficient for processing high volumes of data generated
at high velocity. In shared memory systems (also called IO-attached accelerators;
see [24]) as, e.g., proposed in [53–55] and [43], CPU and FPGA can both access
the same main memory. While this helps avoid additional memory transfers, CPU
and FPGA not only share the same memory but also memory buses. The bandwidth
required by the accelerator can thus limit the processing speed of the CPU. Near-
data processing systems such as [45, 58], and [56] differ significantly. Here, the
FPGA is placed between the data source and the CPU (such deployed FPGAs are
also called bandwidth amplifiers; see [24]). Even then it might not be possible to
fully process a query on the FPGA, but it can significantly accelerate certain tasks
such as filtering data. ReProVide follows the near-data-processing design principle.

Approaches for deploying FPGA accelerators in compute clusters and data cen-
ters often rely on existing frameworks for Big Data like Apache Spark [22, 37, 44]
and Apache Storm [59]. These frameworks are tailored to batch or micro-batch
processing. All of them assume a compute cluster where a global master node
gathers the data, partitions them, and distributes the data partitions to worker nodes,
which contain (PCIe-connected) FPGA co-processors (see, e.g., [31, 59]). Such
approaches thus are based on moving the data to the accelerators. Yet, the main
idea of near-data processing is to move the accelerators to the data. With the sheer
amount of data stored in data centers and the speed at which data are arriving
(data streams), moving data in data centers has become a performance bottleneck.
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Reduction of data along the path from its source to its destination is therefore a
viable means to improve performance and latency and can moreover lead to drastic
energy savings, as shown in [4].

Exploiting the full potential of FPGA-based computing requires specialized tech-
niques for integrating them into DBMS. With the introduction of high-performance
processor units and new accelerators, database architecture has changed from
centralized computing to multiple homogeneous and then to heterogeneous systems.
This has made query optimization much more complex, addressing topics such
as enhanced data and operator placement algorithms [34, 36], adaptive query-
execution models [20, 35, 39], novel co-processing methodologies [13, 15–17],
query optimizers that take hardware heterogeneity into account [5, 14, 18, 20, 36],
and operator programming models to minimize development overheads [19]. While
some approaches opt for hardware-oblivious algorithm design [2, 18, 30, 60], we
decided to be hardware-conscious in order to achieve the best possible results, taking
into account all hardware-specific characteristics while optimizing a query.

Karnagel et al. suggest the HOP (Heterogeneity-conscious Operator Placement)
model to determine the best query-operator assignment to heterogeneous GPU
processors [34, 36]. Their cost model measures the runtime per operator and
computing unit, using their operator-execution model, which involves latency,
data transfer, and execution prediction, as well as placement heuristics. However,
it is limited to GPU. Similarly, Breß et al. look at a co-processor environment
for operator placement and query chopping to prevent cache thrashing and heap
contention [17]. However, their studies are also focused on GPU-based processing
environments. The HAPE (Heterogeneity-conscious Analytical queryProcessing
Engine) is proposed by Chrysogelos et al. [23] for effective and concurrent multi-
CPU, multi-GPU query execution. It can achieve up to an 8x performance benefit
over commercial CPU-GPU-based DBMS.

While current hardware-conscious query-processing methods have shown that
the performance improvement and possibility of incorporating hardware knowledge
into query processing is quite exciting, expanding these findings to an FPGA-
based environment, especially in a near-data-processing system, remains a topic
of active investigation. Hence in our work, we try to fill this gap by proposing a
hardware-conscious optimizer for FPGA-based near-data processing. We focus on
providing accurate hardware information to this optimizer and on implementing
new optimization rules and cost models. We use this information to offload SQL
queries/query operators to our near-data processing hardware according to its
capabilities and dynamic state.
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7.3 Heterogeneous Partially Reconfigurable Architecture for
Near-Data Processing

Reconfigurable data-Provider Units (RPUs) form the basis of ReProVide clusters.
In this section, we give an overview of the underlying hardware architecture that
can be flexibly adapted by loading different accelerator modules via hardware
reconfiguration. We moreover provide a summary of fundamental operations that
can be accelerated on RPUs and how to cover various database operators with these
accelerators.

7.3.1 Reconfigurable Data-Provider Unit (RPU) Architecture

ReProVide builds upon the synergies of a heterogeneous processing architecture
consisting of CPU and reconfigurable hardware, which combines the flexibility and
ease of software implementations with the energy efficiency and performance of
specialized hardware implementations (see Fig. 7.1 (left)). Figure 7.2a1 illustrates
the concept and design of an RPU more closely (see also [5]). The RPU architecture
contains a tightly-coupled Processing System (PS) and Programmable Logic (PL).
The RPU management has been implemented as part of the firmware and is running
on one core of the processing system. While the PS could execute the full set of
query operators, the performance might be inferior. Thus, data processing is mostly
performed within the PL, i.e., the FPGA logic. The PL is divided into a static
part, which contains all components that remain fixed, like hardware controllers
and interfaces, and one or multiple Partially Reconfigurable Areas (PRs). Hardware
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Fig. 7.2 (a) ReProVide platform architecture that encompasses statically implemented hardware
modules like a Network Controller, a Scan Controller, and diverse memory resources, as well
as partially reconfigurable areas PRi for hardware accelerator modules. (b) RPU prototype
implemented on a Xilinx Zynq All Programmable SoC

1 https://doi.org/10.1007/s13222-020-00363-7, CC BY 4.0.

https://doi.org/10.1007/s13222-020-00363-7
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accelerators can be dynamically loaded into these PRs and configured to process
operations on data streams. The accelerators can be exchanged dynamically via
hardware reconfiguration. The number and area of the PRs are decided during the
design phase and constrained by the overall amount of reconfigurable resources
available on the chosen FPGA as well as the resource requirements of the static
system components. The system-management software runs on the CPU system
for controlling the platform for query processing, e.g., reconfiguration of partial
regions, setting configuration registers of accelerators and memory addresses of
Direct Memory Access (DMA) controllers, as well as configuring the network
interface. This RPU design has been implemented using existing FPGA technology
like the Xilinx Zynq All Programmable SoC (see Fig. 7.2b), which contains
programmable (FPGA) logic, multi-core CPUs, and peripherals.

7.3.2 Determining a Query-Specific Configuration for RPUs

ReProVide builds upon partially reconfigurable hardware-accelerator modules.
Various hardware designs to accelerate a wide range of fundamental operations of
query processing have been developed as part of ReProVide. Table 7.1 provides
an overview of operations covered by ReProVide, the supported data types, and
the references describing details about their implementation. One or multiple of
these designs can be synthesized, instantiated, and loaded into one of the partially
reconfigurable areas (PRs).

The fundamental question is now which of such pre-synthesized accelerators to
select and how to configure the PR of the RPU platform for being able to process
a query. First, the given query is formally described by a Query Execution Plan
(QEP) that specifies the order in which operations have to be applied on input

Table 7.1 Operations for which hardware designs have been developed in ReProVide

Operation Supported data type Publication

Scan operator all [3, 5, 8]

Avro parsing Avro records [26, 27]

JSON parsing JSON records [29]

Raw filtering JSON records [25, 28]

Arithmetic +, −, ∗, / INTEGER, UNSIGNED, FLOAT [3]

Comparison <, ≤, =, �=, ≥, > INTEGER, UNSIGNED, FLOAT [3, 25, 26, 28, 29]

Comparison =, �= VARCHAR [3, 25, 26, 28, 29]

Boolean function evaluation BOOLEAN [3, 25, 26, 28, 29]

Regular expression matching VARCHAR [3, 9]

Hash join INTEGER, UNSIGNED, FLOAT [3, 10]

MIN, MAX, SUM, COUNT INTEGER, UNSIGNED, FLOAT [3, 7]

Histograms INTEGER, UNSIGNED, FLOAT [3]
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data. Figure 7.1 (right) illustrates such a plan and also highlights two partitions that
should be mapped onto two RPUs. For determining the query-specific configuration
of an RPU, we assume that the set of pre-synthesized hardware modules is available
in an accelerator library denoted by L. Moreover, the query is represented by
a QEP containing a set of operators O. As illustrated in Fig. 7.3, the first step
for generating the query-specific configuration is to allocate a set of accelerator
instances A from L. Then, each operator node o ∈ O of the query plan has
to be mapped to an accelerator that supports the operations that are required to
implement the respective operator (Sect. 7.3.3 gives more details which set of query
operators is supported and thus can be implemented via the developed hardware
designs summarized in Table 7.1). As exemplified by accelerator Acc1 in Fig. 7.3,
accelerators may be synthesized such that they can be dynamically configured to
support multiple operators. Furthermore, buffers have to be allocated between the
selected accelerators for enabling data exchange between subsequent operations.
The problem of determining a query-specific configuration on the reconfigurable
target platform can then again be formalized as a mapping problem for deciding
how to assign the allocated accelerators to PR and buffers to the memories available
on RPUs. Details of solving this query-placement problem are discussed in [5].

7.3.3 RPU-Supported Operators and Operations

The RPU architecture is designed to process data streams stemming from locally
connected storage devices (like SDDs) as well as for processing data obtained from
network streaming sources such as IoT devices. Operations performed on such
data streams can be divided into pipelined (non-blocking) operations and pipeline-
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breaking (blocking) operations (see, e.g., [6]). Examples of the latter category are
sorting and joining data as well as machine-learning algorithms such as clustering.
They require the complete data or at least a huge amount of data tuples to be
available for processing and also have random data-access patterns. Implementing
such operators in hardware on FPGAs is often inefficient or even not feasible due
to the restricted local memory and hardware resources and relatively low clock
frequencies of FPGAs. As even large data paths containing multiple accelerators
may not be able to cover complete queries, the aim of near-data processing on RPUs
is therefore to load accelerators that allow to reduce the amount of data that a DBMS
subsequently has to process as much as possible. A key prerequisite of ReProVide is
that each operation can execute at I/O rate so that no processing step introduces any
throughput penalty.Next, we give a brief summary of supported operators and which
RPU operations are available to implement these (see Table 7.1). The discussed
operators are also part of the example query in Fig. 7.1 (right).

Scan Operator (Scan) The RPU provides a dedicated and parameterizable hard-
ware component called Scan Controller [5] to perform the scan operator. It is based
on ReOrder units as presented first in [8]. The controller can be programmed to
gather data from multiple locations (i.e., attached storage devices) and then provide
them in the expected order. A DBMS using an RPU for near-data processing may
request data using a specified schema (row-store or column-store layout), while the
data source (e.g., the locally connected storage of the RPU) might store the data in
another schema.

Parsing Operator (Parse) In many Big-Data applications, in particular data-
stream processing, the data originates from external sources. The incoming data
is usually encoded in an exchange format, such as JSON or Avro, to provide a
standardized interface. Also, with the popularity of NoSQL databases, more and
more data is stored in such formats. RPUs therefore provide hardware acceleration
for parsing, as detailed in Sect. 7.4.2.

Selection Operator (σ ) Separating relevant data tuples from irrelevant data is
fundamental in query processing. ReProVide supports filtering on arithmetic expres-
sions and comparisons on INTEGER, UNSIGNED, and FLOAT data types. More-
over, filtering based on string matching is supported. Although regular-expression
matching is a complex operation, it is supported as discussed in Sect. 7.3.4. Multiple
of such comparisons can be concatenated by means of Boolean functions to form
complex filtering conditions.

Projection Operator (π ) Only picking those attributes that are relevant for
subsequent queries, the application, or the user is another fundamental operator
of query processing. This can be easily implemented in hardware, by only writing
or reading the relevant attributes in registers. Particularly, the Scan Controller (see
above) can be programmed to only selectively read those data from the data source
that are actually required.
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Join Operator (��) Joining data from multiple data sources is another fundamental
database operator. Joins are blocking operators. Nonetheless, ReProVide provides
support for hash joins, as discussed in Sect. 7.3.4.

Aggregation Operators Such operators calculate values by iterating over multiple
tuples, for example, counting tuples (COUNT), accumulating values of attributes
(SUM), or determining their average, maximum (MAX), or minimum (MIN).
ReProVide provides hardware designs for most of these. Aggregating over virtually
infinite data streams requires windows. This is discussed in Sect. 7.4.2.

Statistics Calculation Statistics about the data are relevant for DBMS particularly
for query optimization (see [48, 49]). It has been shown in [32] that accelerators to
generate statistics can be implemented with basically no execution-time overheads
by using additional hardware resources. However, in [7], we presented a technique
on how they can be generated even without having to reserve additional FPGA
resources. We achieve this in ReProVide by making use of dynamic partial
reconfiguration to exchange hardware accelerators at runtime according to the query
to execute. These accelerators are loaded into PRs. Locations and sizes of these
regions on the FPGA are fixed at design time. However, accelerators for query
processing do often not allocate all available resources in such regions. In [7],
we presented modules for gathering statistical information that can be added to
accelerator designs using such free FPGA resources. These include counters as well
as maximum, minimum, average, and histograms over attribute values (see [7] and
[3]). So, besides implementing the previously enumerated operators, the accelerator
can produce statistical information as a by-product.

7.3.4 Optimistic Filtering to Support Complex and Blocking
Operators

One challenge is developing reconfigurable hardware accelerators for complex
and/or blocking operators. Some operators might not satisfy the limited memory or
resource constraints on an FPGA, while some may be inefficient when blocking.
Thus, in order to support as much data filtering/reduction as possible on an
RPU without blocking, we have introduced the concept of optimistic filtering for
complex and/or blocking operators such as regular-expression matching [9] and
hash joins [10]. An optimistic filtering operator is an operator delivering an over-
approximation of the result data, driven by the goal to reduce the amount of result
data as much as possible. In effect, the resulting data stream of an optimistic
filtering operator may still contain false-positive tuples that do not match the original
operator’s condition (e.g., tuples with no matching key in the case of hash joins
[10], or text documents that do not match a regular expression [9]). To deliver
exact results, the operator still has to be performed again, e.g., in software on the
host, but on a typically much smaller set of data. One prerequisite of ReProVide
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remains: Optimistic operators should process the data at I/O rate. Only in this case
it is guaranteed that throughput is not penalized. So, with the significantly reduced
amount of data, not only the overall execution time but also the energy consumption
has been shown to be reduceable (see [10]).

7.4 Near-Data Processing of Streaming Data

In many Big-Data applications like the Internet of Things (IoT) and Industry 4.0, the
data originates from external sources. Stream processing has emerged as a crucial
approach to continuously process and analyze data as it is generated or received.

The query plan in Fig. 7.1 (right) illustrates a typical stream-processing query
on a flight data stream. The incoming data is usually encoded in an exchange
format, such as JSON [12] or Avro [1], to provide a programmer-friendly and
extensible application interface. The first step in the stream-processing pipeline has
then to be parsing the input data into a format that is easier for the machine to
use. A projection is often applied directly during parsing to extract only the wanted
attributes. Subsequently, filter expressions are analyzed to filter out entire tuples.
Next, the data may be joined with other data. Here, two fundamental types of joins
can be distinguished. A static join joins the elements of the data stream with tuples
of a relational table, as is the case with the join (��) of flight data and airports data
in Fig. 7.1. On the other hand, two streams can also be joined against each other.
However, as streams are usually unbound, this must be performed via a bounded
window, which can then be joined like a traditional relation. In the same way,
windows are used to apply aggregate functions in stream processing. Such windows
can be bounded by a fixed number of tuples, e.g., the last 100 tuples. Alternatively,
a time-based boundary can be used, e.g., all tuples in the last 10 seconds.

Parsing is essential for processing of data streams. However, parsing can pose a
severe bottleneck: [41] reports that Big-Data applications can spend between 80 and
90% of their execution time on parsing.

In the following, we present near-data-processing techniques to avoid this
bottleneck, discussing a concept of optimistic filtering in Sect. 7.4.1 as well as
concepts for hardware-based parsing in Sect. 7.4.2.

7.4.1 Raw Filtering for Optimistic Data-Stream Processing

JSON data is a byte stream of ASCII-encoded data. So-called Raw Filters were
introduced in [25, 51] for applying filter expressions directly to a raw JSON byte
stream, e.g., inserted between the flight data source and the parse operator in
Fig. 7.1. The most basic Raw Filters are string comparisons that check whether a
string occurs anywhere in a given JSON record. For example, one of the selection
operators (σ ) from the exemplary query in Fig. 7.1 checks whether the attribute
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origin_country is equal to the value “France.” A respective Raw Filter might check
only whether the string “France” occurs anywhere in the record and passes on
records with a match. By doing so, even if no false negatives are generated, false
positives might occur through this optimistic filtering (see Sect. 7.3.4). Such false
positives would then be filtered out later in the stream-processing pipeline they have
been parsed, and the filter condition has been checked.

As raw filtering follows the paradigm of optimistic filtering, the approach can
be further simplified by performing even the string search itself optimistically. To
do this, a given search string of size N characters can be broken down into smaller
n-grams of n ≤ N characters, each of which is to be searched for. For example, for
the search string “France” and n = 2, this would be “Fr,” “ra,” “an,” “nc,” and “ce.”
If at least N − n + 1 n-grams match (in the example, 6 − 2 + 1 = 5 n-grams), the
entire search string is considered to match. We describe this concept called block
partitioning in [25] including an FPGA hardware implementation with a minimized
resource cost.

In addition to string comparisons, filter expressions frequently involve number
comparisons, which can be used to further increase the selectivity. As JSON encodes
numerical values in ASCII format, filtering for specific numbers can be mapped to
a string search. To also support numerical comparisons including <, ≤, >, and ≥,
we introduced a raw-filtering technique in [25] for mapping any such comparison to
a regular expression, which can then be implemented in hardware by a Finite State
Machine (FSM).

Usually, filter expressions contain multiple comparisons combined via logical
operators (and, or, xor, not). To cover these cases, individual Raw Filters can also
be combined using Boolean expressions. Note that in case of an or or xor expression
in the filter operation, all operands must be evaluated, whereas in case of an and
expression, one or multiple operands may be omitted even in optimistic filtering at
the expense of an increased number of false positives.

For the correct processing of stream-processing pipelines, parsing becomes
indispensable. Only then can operators such as projection and filtering be carried
out accurately. Nevertheless, it may still be worthwhile to use Raw Filters before
parsing, as these can significantly reduce the effective data volume to be processed
by the subsequent operators.

7.4.2 Parse-Filter-Project: Selective Data-Stream Parsing

In general, the complexity of parsing is highly dependent on the data format used.
Here, one important characteristic of the data format is whether it is schema-based
or schema-free since schema-free formats require the parser to reconstruct the
schema itself. Another distinction, particularly interesting for hardware processing,
is whether the data is binary or ASCII-encoded. ASCII-encoded formats tend to be
very sparse. However, the conversion of data types such as numerical values into
binary format becomes more complex. In the following, the parsing of two semi-
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structured formats, strongly differing in the above characteristics while being also
widely used in stream-processing systems, will be discussed. These are JSON [12],
an ASCII-encoded schema-free format, and Avro [1], a binary-encoded schema-
based format.

In both cases, two fundamental tasks have to be carried out during parsing.
One is schema tracing, where the current position of the input data in the given
schema needs to be identified in schema-based formats. In schema-free formats,
a schema reconstruction must be performed instead. The other fundamental task is
data conversion, for example, the conversion of numerical values into binary format.
Here, it is advantageous to perform the projection directly during parsing, as then
only the relevant attributes required by subsequent operators need to be converted.
In addition, we show in [29] for JSON that the integration of the projection into
the parser may greatly simplify schema tracing, since irrelevant parts of the schema
only need to be checked for their structural correctness.

7.4.2.1 Avro Parsing

The sequence of attributes in Avro is pre-determined by a given schema. For
tracing the schema, we propose in [26] to map it to a nested FSM, with each state
representing an attribute. The state of the current attribute remains active until the
respective attribute has been completely parsed. States for complex data types such
as records or arrays again contain a nested FSM that traces their respective sequence.
A peculiarity of Avro is the encoding of integers, which follows a variable-length
format. Numbers with a small absolute value therefore require fewer bytes than
numbers with a larger absolute value. Each byte of an encoded integer contains a
continuation bit that indicates whether a subsequent byte follows. A straightforward
approach for hardware acceleration of Avro data parsing [26] needs to process only
one byte at a time. For being able to reach a parsing throughput that matches the
I/O rate, independent records are simultaneously processed on multiple parallel
parser modules. It is also possible to apply simple filter expressions on the parsed
attributes. Moreover, projections are realized by only connecting the registers of
required attributes to the accelerator output.

In [27], we present an alternative solution to Avro parsing in the form of
an application-specific instruction set processor (ASIP) architecture design. An
instruction program controls the ASIP to parse a specific schema. Any schema
change therefore only requires the loading of a new instruction sequence into an
instruction memory, thus requiring neither resynthesis nor reconfiguration.

7.4.2.2 JSON Parsing

An advantage when parsing JSON data is its sparsity, which can be exploited to
derive resource-efficient implementations, e.g., as shown in [29] for FPGAs. This
sparsity is illustrated in the example depicted in Fig. 7.4, where three attributes, id,
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2

Fig. 7.4 JSON parser flow example for projecting attributes id, loc.long, and loc.lat from a flight
record

lat (latitude), and long (longitude), are projected, where the lat and long attributes
are part of the nested attribute loc (location).

Only structural characters (i.e., { , } , [ , ] , : , , ) and key strings (i.e.,

id , loc , long , lat ) are relevant to track the current projection paths within a
JSON record. This information is first extracted from the stream 1 and encoded
in symbols. The number of data to be processed is thus significantly reduced (in
the example, the overall 71 ASCII input characters is reduced to 17 symbols,
corresponding to a reduction down to 23.9%). The symbols are then passed to a
pushdown automaton 2 that keeps track of the current position in the JSON record.
Since pushdown automatons are difficult to parallelize in hardware, a decent symbol
reduction is necessary in the extraction step 1 to achieve line rate. Whenever a
new hierarchy level is reached in the stream, an uninitialized state is pushed onto
the automaton’s stack (areas filled with hashed patterns in the figure). Whenever
a relevant key symbol is observed in the correct state according to the given
projection path, the state is initialized correspondingly (areas filled without pattern).
Furthermore, if this state represents the end of a path of the projected attribute (green
areas in the figure), the extraction of the respective attribute is triggered.

The extracted data must then be converted into the desired data type. In JSON,
this conversion is particularly complex for integers and floats but can be easily
parallelized as extracted attributes can be processed independently of each other.
The number of type-conversion units can then be matched to the throughput
requirements of the numbers to be processed, so that the I/O rate is sustained with a
minimum of resources.

7.5 Query Optimization for Heterogeneous ReProVide
Clusters

Connecting an RPU, as introduced, to a database and/or data-stream management
system on a host—to make its power usable in query processing—leads to a
heterogeneous system. This can be seen in Fig. 7.1 on page 172. A network must
be used in establishing the connection, which must be fast enough in order not to
thwart the benefits. This is a simple version of a distributed system, with all the
challenges coming with those systems. And the two types of processors on both
sides—the CPUs on each RPU and the standard CPU on the host—require very
different ways of optimizing the query processing. The first specific architectural
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problem of the ReProVide project is that the data in the current version only flows
from the RPU to the host, and this only happens when a query is being processed.
So the host has no knowledge of the data (except for the schema). This must be
overcome.

The second problem is that we want to support line-rate data processing, because
that is the most appropriate way of using an FPGA (see Sect. 7.2). However, the
set of operators used in query processing is large, and not every operator can be
implemented efficiently on an FPGA (Sect. 7.3.3). So the set of operators suitable
for execution on the RPU is smaller—which makes the two systems even more
heterogeneous.

The third problem is the near-data processing w.r.t. the storage device (an SSD
in our prototype) or the ingress data stream. This should take substantial load from
the following processing units downstream, i.e., the RPU itself, the network, and the
host. It is in competition with many proposals for smart devices, e.g., [33, 52].

And finally we have to accept that resources on an FPGA even today are limited.
The reconfigurable regions allow for adaptation to a large set of queries (a starting
point for the whole project years ago). However, such a region is only capable of
being loaded with a module that has been specifically synthesized for it. All of
this must be taken into account when planning query execution. Still, we have built
a prototype that successfully demonstrated the execution of queries at the EDBT
conference 2020 [48].

7.5.1 Holistic Query Optimization

Confronting the multifaceted challenges outlined in the preceding paragraphs, we
have devised the following methodologies to manage the intricacies involved in
query optimization.

Based on an initial distinction between a global and a local optimizer in [47],
we propose a unified holistic optimization framework. A fundamental principle of
this revised methodology is encapsulated in the concept of “one fact, one place.”
This paradigm mandates the consolidation of all optimization-relevant information,
such as statistical data, schema details, and data placement, into a singular,
centralized query repository (Sect. 7.5.3.3). This streamlining of information flow
not only enhances efficiency but also contributes to a more cohesive and effective
optimization process. By centralizing data, our system gains the ability to more
accurately allocate resources, leading to more predictable outcomes when executing
queries. The required information for optimizing our system is acquired through
a combination of probe queries (Sect. 7.5.3.2) and continuous monitoring of data
streams as they traverse our query-execution engine. Additionally, maintaining a
historical record of executed queries in the query repository provides valuable
insights on possible query sequences. These sequences, typically characterized
by a consistent series of queries with varying parameters, are common in certain
applications. In our previous research, detailed in [47], we explored the potential
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of exploiting such patterns to optimize the placement of accelerators on our RPU.
By recognizing these query sequences, we can strategically position accelerators
on the RPU to maximize performance, thereby enhancing the overall efficiency of
query execution within our system. This integration of historical data and predictive
analytics into our holistic approach represents a significant advancement in our
ability to fine-tune our system for optimal performance.

7.5.2 Optimizing Relational and Stream-Based Queries for
Heterogeneous Systems

In this section, we present our innovative query optimizer, KR@KEN. Figure 7.5
illustrates the core components of our system on the left and outlines the com-
prehensive optimization process on the right. KR@KEN enables the optimization
of both relational and stream-based queries across heterogeneous and distributed
environments. Central to our system is the cost model (see Sect. 7.5.2.2), which
facilitates the integration of various hardware platforms (such as x86 and FPGA)
and supports query optimization over multiple platforms. Taking into account the
hardware resources available and the user’s expectations (see Sect. 7.5.2.4), we
determine the most suitable accelerator for executing the query.

7.5.2.1 Plan Enumeration and Selection

The formulation of alternative QEP and the subsequent selection of the most cost-
effective approach present complex challenges, fraught with potential pitfalls. A
consistent element within our system has been the incorporation of Apache Calcite
[11]. This open-source framework is instrumental in constructing database and
streaming systems, distinguished by its sophisticated optimization capacities, its
compatibility with diverse data sources, and its support for stream-data processing.
For our hierarchical optimizer COPRAO [50], we modified and extended Apache
Calcite using our own optimization rules. We also implemented algorithms to
predict the execution of certain queries based on query sequences [49]. For our new
holistic optimizer KR@KEN, Calcite’s role is confined to functioning as an SQL
parser, which translates SQL statements into preliminary logical query execution
plans (QEP). These plans undergo further refinement through KR@KEN, which
employs dynamic programming coupled with a suite of predefined transformation
rules to modify and optimize segments of our execution plan. A novel cost model,
specifically designed to address the nuances of distributed systems and to leverage
modern hardware advancements like our RPU, is utilized to ascertain the most
economical execution plan. This cost model, in conjunction with our resource
model, enables the generation of execution plans that are not only optimized for
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performance but also meticulously tailored to the limited processing resources
available on our FPGAs.

7.5.2.2 A Cost Model for Heterogeneous Query Processing

Modelling costs for heterogeneous systems, which encompass not only standard
x86 CPUs but also network components and FPGAs, pose significant challenges.
Traditional cost models in the realm of database query optimization have pre-
dominantly focused on factors such as CPU usage, I/O operations, and cardinality
estimations. These factors are critical for the host query-execution engine, yet they
do not comprehensively address the complexities and unique characteristics of a
system that integrates diverse hardware components like FPGAs. Acknowledging
this gap, we developed a hardware-independent cost model tailored to evaluate
costs pertinent to the end-to-end performance of queries in such a heterogeneous
environment. This model diverges from traditional approaches by considering a
broader spectrum of performance indicators. The key components of our model are:

End-to-End Latency (t): Our model takes into account the total time a tuple
takes from the input (storage or receiving from the network) to the user or
application that has issued the query. This end-to-end latency measurement is
crucial in heterogeneous systems where data might traverse through various
processing units (like CPUs, FPGAs, and network routers) each contributing to
the total processing time.

Throughput (r): The model also evaluates throughput, which is the amount of
data (rows) processed in a given time frame. In a system combining CPUs,
FPGAs, and network components, throughput becomes a critical measure, as
each component can have varying data-processing capabilities and speeds.

Energy Consumption (e): Given the varied power requirements of different
components in a heterogeneous system, our model assesses the energy consump-
tion relative to the tasks performed. This approach ensures a more sustainable
and cost-effective utilization of resources, especially important in systems where
FPGAs and network components may have different power profiles compared to
standard CPUs.

In addition to the aforementioned components, there is also auxiliary information
used in the cost model. This auxiliary information is not included in the comparison
of two execution plans, but it is required to calculate the cost components.
Depending on the type of query—relational or stream-based—different sets of
auxiliary information are incorporated.

Number of tuples (ntuples): An estimation of the number of tuples the operator
will produce (relational queries only).

Tuple size (stuple): The number of bytes of each tuple the operator produces,
determined using the execution plan.

Output rate (rout ): An estimation of the number of tuples per (nano)second the
operator will output (streaming queries only).
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Maximum throughput (rmax): The theoretically possible maximum throughput
the operator can achieve.

By integrating cost components with the auxiliary information, we can now define
the cost tuple for any given operator as follows:

Crel(op) = [t (op), r(op), e(op)] with Auxrel(op) = [ntuples, stuple, rmax]
Cstream(op) = [t (op), r(op), e(op)] with Auxstream(op) = [rout , stuple, rmax]

The values for the whole QEP are those of the last operator in the plan. Cardinality
estimations and statistics are used to determine these values. In order to compare
two QEP with each other, we use a function mapping the three costs to a scalar
value. To do this, we use a weighted function, where wt , wr , and we represent a
weight we multiply with the associated cost. The weights provided in our system
can be adjusted by the user to place greater emphasis on certain cost components,
depending on their specific expectations for hardware usage.

Cost (plan) = t (plan) × wt + (rmax(plan) − r(plan)) × wr + e(plan) × we

Since the goal is to minimize the cost, and while the throughput should be
maximized, the cost calculation uses the maximum achievable throughput (over all
operators) and subtracts the actual throughput.
To optimize queries effectively, it is crucial to estimate cardinalities. Cardinalities
(ntuples , rout ) are just one aspect we need to consider for our cost model. It also
relies on a variety of other hardware and implementation-depending parameters,
e.g., number of instructions per second, block-read time, and many more. We
developed a micro-benchmark suite to measure these values, enabling us to tailor
our model to the specific characteristics of the underlying hardware. The benchmark
uses our own execution engine to run multiple tests with varying filter expressions
and projections. For estimating cardinalities, we currently employ a sample-based
approach, which is updated periodically. We also include statistics collected using
our query repositories. This includes statistics we create using, for example, probe
queries (see Sect. 7.5.3.2).

7.5.2.3 Example Query and Execution Plans

In order to illustrate the capabilities of our cost model, we will look at a small
example demonstrating how it helps us optimize queries. The execution plan we
want to be optimized can be seen in Fig. 7.6 (left). It performs a series of operators
(parsing, selection σ , projection π ) on a stream S. Moreover, Fig. 7.6 displays four
possible QEPs (plan A to D) the optimizer could create during query optimization.
Plan A represents a configuration in which all data is processed on the host. This
is of course possible but highly inefficient as we have to parse the incoming JSON
data, which requires a lot of processing power. Our goal is now to offload as many
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Fig. 7.6 Example of a logical query execution plan (left) and four possible execution plans for
partitioning operators (parsing, selection σ , projection π ) between RPU and host

Table 7.2 List of exemplary execution plans shown in Fig. 7.6 together with their estimated cost

Plan Execution order Latency Throughput Energy Cost

A πhost (σhost (scanhost (S))) 54.079 0.016 3 89.17

B πhost (σhost (net (scanrpu(S)))) 62.70 0.020 3 97.40

C πhost (net (σrpu(scanrpu(S)))) 60.12 0.012 2 84.71

D net (πrpu(σrpu(scanrpu(S)))) 48.74 0.020 1 65.51

scan includes parsing, π = projection, σ = filter, net = network transmission

operations as possible to the RPU. Table 7.2 shows the cost of the plans A to D
according to Fig. 7.6. As we can see, plan D has the lowest cost. This QEP would
push down all operations to the RPU and would only require the network transfer
to the host in order to send the data to the user. The calculations used in the table
cannot be listed here explicitly due to lack of space.

7.5.2.4 Managing Limited Hardware Resources and Accelerators

In managing the limited processing resources of/on RPUs, it is essential to strategize
the resource allocation for each query based on user expectations and system
capabilities. Figure 7.5 (right) shows this last step, where the KR@KEN optimizer
has to choose the right accelerator based on these requirements. We offer multiple
strategies to utilize the available resources on the RPU.

Event Monitoring: Event-monitoring queries, typically employed for monitor-
ing production lines or sensor networks, are designed to run for extended
periods, often spanning weeks or months. Due to their long-running nature, the
latency between initiating the query and beginning the processing of tuples is
less critical compared to other use cases. For optimizing these long-running
queries, we can provide users with the option to synthesize accelerators tailored
specifically to their query. These custom accelerators are designed to occupy a
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minimal amount of resources on the FPGA, making them an efficient choice for
prolonged operations where space efficiency and sustained performance are key
considerations.

Regular Reporting: Queries of this type, typically executed on a daily, weekly,
or monthly basis, often differ only in a few parameters, such as dates or business
unit IDs. For these scenarios, we provide pre-synthesized accelerators designed
with the flexibility to modify specific values. This approach allows for efficient
reuse of the accelerators while accommodating the minor variations in query
parameters.

Realtime BI: For this highly dynamic use case, where a rapid response time
between issuing the query and receiving results is crucial, we cannot afford
the time required to synthesize accelerators. Instead, we need to deploy pro-
grammable accelerators. These programmable accelerators, while consuming
more space on the FPGA, offer greater processing flexibility. This trade-off is
essential to meet the demand for quick query-turnaround times, making them a
suitable choice for scenarios where speed is a priority.

7.5.3 Learning from the Past: Offline Optimization to Improve
Query Optimization

We will now finally look at offline optimization, which has the important task to
prepare everything for online optimization. This includes data from history and
statistics. A very important decision concerns the placement of data: Which table
should be stored in the RPU and not on the host itself? And which stream should
be received by the RPU and not by the host? If we have more than one RPU
in operation, these questions must be answered for each of them. A substantial
characterization of the expected workload is a prerequisite of such a decision.

7.5.3.1 Detecting Query Sequences

As we presented in Sect. 7.5, query sequences are very helpful in optimizing the
reconfiguration and placement of accelerators in the RPU. This requires, however,
that we have identified such query sequences first. Database query logs are a good
source for that, and our own query executor also logs any query it has seen. Still it is
not easy to identify repeated query sequences in such a log because each repetition
varies at least a bit. This of course refers to the constants used in the queries, often
in comparisons of filter expressions. But even the number of queries can vary, while
you would still consider it to be the same query sequence. This is because of loops
in the application programs that issue the queries. How a detection of sequences can
still be automated is discussed in Beena Gopalakrishnan Nair’s PhD thesis [46].
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7.5.3.2 Probe Queries

While the RPU can send many messages to inform the host about the data it stores,
this traffic tends to disturb the operation of the system. An alternative are the so-
called probe queries, which are sent to the RPU in spare times. The host can
generate them tailored to its information needs, and they are executed just as any
other query, yielding a whole set of useful information for the optimizer, e.g., real
cardinalities, execution times, and throughput values. They might particularly make
use of statistics calculations as presented in Sect. 7.3.3.

7.5.3.3 Query Repository

To efficiently store and manage the wealth of information discussed in the preceding
sections, we developed a query repository. This repository archives all queries
executed on our system, along with comprehensive statistics related to our sources,
including relations and streams. Furthermore, it accommodates our cost models
and execution plans. Such consolidation of data within the repository facilitates
the identification of query sequences, as highlighted in Sect. 7.5.3.1, enabling us to
glean insights from historical data. Through the application of statistical methods,
we can now more accurately characterize the workload encountered by our system.
This enhanced understanding allows us to refine our cost and resource models
(as part of offline optimization), ensuring they are optimally aligned with our
operational requirements and objectives.

7.6 Experimental Evaluation

This section presents an experimental evaluation of ReProVide by means of a case
study on processing real-world data. This case study is based on SKYSHARK.2

We developed SKYSHARK [40] as a comprehensive benchmark tailored for
evaluating heterogeneous stream-processing systems like ReProVide clusters. The
benchmark is derived from a combination of real-world, publicly accessible air-
traffic surveillance data (ADS-B) and relational data, such as information on
airports and aircrafts. The benchmark leverages a rich dataset amassed from a
broad network of receivers contributing to the OpenSky Network,3 a collaborative
open-source project dedicated to the collection and storage of ADS-B messages.
This dataset is characterized by its complexity and breadth, encompassing detailed
information on aircraft movements, flight paths, and airport operations. To enhance
its applicability for benchmarking, the dataset has been thoughtfully augmented

2 https://skyshark.org
3 https://opensky-network.org/

https://skyshark.org
https://opensky-network.org/
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with additional details about the aircrafts and airports, enriching its utility for per-
formance evaluation while preserving the original data’s integrity. The SKYSHARK
benchmark also includes a set of diverse queries, which are designed to rigorously
test a system’s performance across various operational scenarios, ranging from
simple data retrieval to intricate analytical tasks. Accompanied by a specialized
benchmarking tool, SKYSHARK facilitates the measurement of system latency
and throughput, offering researchers a robust framework for assessing stream-
processing capabilities.

For the following experiments, we selected two queries on the dataset provided
by SKYSHARK to evaluate the near-data processing capabilities of ReProVide.

Query 7.1 Searches for flight data tuples with specific transponder codes (squawk):

1 SELECT id,icao24,callsign ,longitude ,latitude ,
baro_altitude

2 FROM states
3 WHERE squawk = 1000 OR squawk = 7120 OR squawk = 7637

Query 7.2 Searches for flight data tuples with a more complex filtering condition based on
altitude, vertical velocity, and transponder code:

1 SELECT id,icao24,callsign ,longitude ,latitude ,
baro_altitude

2 FROM states
3 WHERE baro_altitude > 10668 AND
4 (vertical_rate < -0.33 OR
5 ((squawk = 8600 OR squawk = 1000) AND vertical_rate <

-4.88)
6 )

The QEPs of both queries thus are a sequence of parse, selection, and projection
operators and consequently follow the form as also depicted in Fig. 7.6 (left).

A dataset consisting of 100,000 flight data JSON records with an overall size
of 38MB is stored in the main memory of an RPU as representative for both the
scenarios where data comes from an attached SSD or from an external data source
via Ethernet. In both cases, the data would be buffered in main memory to be
subsequently processed by the RPU. For each query, we have evaluated four query
execution plans that follow the structure of the plans illustrated in Fig. 7.6: In Plan A,
the JSON data is transmitted to the host which is in charge of parsing and processing
the data. In Plan B, each JSON record is parsed by a hardware accelerator. Tuples
only containing the attributes required for further processing are transmitted to the
host. In Plan C, the selection operator and, in Plan D, all operators are hardware
accelerated on the RPU before transmission.

The basic idea of near-data processing is to reduce the data volume and velocity
close to the source at the rate of data generation (i.e., at I/O rate). For our analysis,
we therefore measured the input rate (RPU reading from the main memory) and
output rate (RPU sending over the network) in both MB/s and tuples/s. The results
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Table 7.3 Results measured on an RPU implemented on a Xilinx ZCU106 Zynq SoC for
executing queries 1 and 2 according to the four different plans A to D, giving the average over
100 runs per query and plan. For plan A, a tuple corresponds to a JSON record. For all other plans,
a tuple is an ordered list of attributes

Size of sent Time Input rate Output rate Input tuple Output tuple

data [MB] [ms] [MB/s] [MB/s] rate [tuple/s] rate [tuple/s]

Query 1

Plan A 38.023 77.03 493.7 493.7 1,298,373 1,298,373

Plan B 4.012 59.50 631.5 67.5 1,681,749 1,681,749

Plan C 0.860 35.99 1043.9 23.9 2,779,779 595,596

Plan D 0.856 35.92 1045.9 23.9 2,785092 596,734

Query 2

Plan A 38.022 77.52 490.6 490.6 1,290,234 1,290,234

Plan B 4.814 65.86 570.4 73.1 1,518,970 1,518,970

Plan C 0.079 30.09 1248.5 2.6 3,324,640 712,337

Plan D 0.066 30.15 1246.1 2.2 3,318,337 710,987

for executing both queries according to plans A to D are shown in Table 7.3. It
displays the input and output rates as well as the execution time for processing
the query including the reconfiguration time for loading the respective accelerator.
Both the size of sent data and the output rate, but also the overall execution time
for processing a query, are significantly reduced by near-data processing on the
RPU, without degrading the input rate. The reduction becomes even greater the more
operations are outsourced to the RPU (plans C and D). Also the input rates increase
here. This is because the ARM CPU on the RPU has to set memory addresses and
to control the network transfers. If the amount and rate of data is reduced, this also
relieves the CPU on the RPU so that the overall system performance increases. This
case study assumes that accelerators for the query are already synthesized and can
be loaded on the platform when processing a query. If they had to be generated first,
an additional overhead would be incurred for the synthesis. For the accelerators used
in the above experiments, the synthesis time was around 20 minutes.

7.7 Summary

The core of the ReProVide methodology is to use reconfigurable near-data query-
processing systems called RPUs for processing data at its source. RPUs can be
configured to apply various operations on relational as well as streaming data
to filter out relevant data tuples before pushing them further to a DBMS. Only
transmitting this information-rich subset of data to the host system has the potential
of significantly reducing the dominant factor of power consumption in data-center
networks: data transport. An explicit focus in the design of RPUs was laid on the
I/O-rate processing capability and the coverage of a wide range of queries. For
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optimally utilizing RPUs for query processing, novel optimization techniques are
required that take into account which operators can be accelerated in hardware and
the overhead for loading the respective accelerator module. We have particularly
identified optimization strategies that can be used to implement heuristics for query
partitioning and discussed how statistical information, e.g., about query sequences,
can furthermore help design these systems in terms of synthesizing hardware
accelerators and partitioning the data.
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Chapter 8
Scalable Data Management on
Next-Generation Data Center Networks

Matthias Jasny , Tobias Ziegler , and Carsten Binnig

Abstract The landscape of distributed Database Management Systems (DBMSs)
has been fundamentally transformed by advancements in data center network
technologies. Traditionally, these systems were designed to minimize network
communication, which was perceived as a significant bottleneck. However, with the
advent of high-speed networks and technologies such as Remote Direct Memory
Access (RDMA), this perception is changing. RDMA allows direct memory access
to remote machines at speeds comparable to local memory access, challenging the
long-standing belief that network communication is inherently slow. This chapter
explores how the evolution of data center networks, mainly through RDMA, has
enabled new designs for disaggregated databases. Moreover, the chapter delves into
programmable networks as a solution beyond RDMA. In particular, this chapter
provides an overview of RDMA and programmable networks and introduces novel
ideas for optimizing databases in disaggregated setups using RDMA. Furthermore,
two approaches are highlighted that leverage programmable networks in addition
to RDMA to improve the efficiency of disaggregated databases even further:
P4DB, which leverages programmable data planes for in-network OLTP processing,
and zero-sided RDMA, a network-driven data shuffling method that enhances
communication efficiency between heterogeneous accelerators. By showcasing
these advancements, we demonstrate how database systems can utilize specialized
networking hardware to achieve unprecedented performance levels. The chapter
concludes with a summary and discussion of future research directions in the field
of data center network technologies and their impact on distributed DBMSs.
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8.1 Introduction

Evolution of Data-Center Networks Advancements in data center networks
have dramatically transformed the landscape of distributed Database Management
Systems (DBMSs). Historically, these systems implemented complex strategies to
minimize or bypass network communication, operating under the assumption that
the network was a significant bottleneck.

This traditional view is now being challenged by the advent of high-speed
networks and new technologies such as Remote Direct Memory Access (RDMA).
RDMA revolutionizes data access across networks by enabling direct memory
access to a remote machine’s memory nearly as fast as accessing local memory.
This development invalidates the long-standing belief that network communication
is inherently a significant bottleneck.

Given these advancements, a major change has occurred in how we build
database systems for the cloud.

Disaggregation Using Fast Interconnects The trends in data center networks have
enabled new designs for distributed databases. With the performance improvement
of networks, there has been a shift toward disaggregation, separating compute
and storage or even accelerator pools from traditional compute [7, 12, 26, 38].
Nowadays, most cloud-native systems are disaggregated since they offer improved
resource utilization, as each resource can be scaled independently based on demand.
However, since all data is accessed over the network, considerable attention has
been paid to developing fast network solutions. Major cloud vendors deploy
Remote Direct Memory Access (RDMA) to enable efficient resource disaggregation
[2, 4, 52]. In database use cases, RDMA has successfully improved the performance
for distributed join operators [6, 34], reduced the cost of concurrency control [12],
and made storage access [50] possible at unprecedented speeds.

Programmable Networks: Beyond RDMA RDMA has undeniably revolution-
ized efficient networking by optimizing the network stack with dedicated DMA
engines in the NIC and a more streamlined protocol. However, as bandwidth
and message rates continue to increase, RDMA alone is no longer sufficient. To
illustrate, a 400G network stack can deliver a new packet every 3 nanoseconds,
while an L3 cache access typically takes around 10 nanoseconds.

Furthermore, when examining Fig. 8.1a, we observe that CPU frequencies have
plateaued with the end of Moore’s Law, indicating that CPUs are not increasing in
speed. This means we cannot rely on increasing frequencies to improve our network-
ing performance. In contrast, Fig. 8.1b shows that network bandwidth continues to
rise; this year, 400G Ethernet was standardized, and 1TB is expected soon. We
argue that this mismatch between CPU speed and network bandwidth development
underscores the need for further specialization in network technology—we need to
look beyond RDMA.
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Fig. 8.1 CPU frequency and network bandwidth development over the last years. (a) CPU
frequency. (b) Network bandwidth

Outline In the remainder of the chapter, in Sect. 8.2, we will first provide the
necessary background on RDMA and programmable networks. Afterward, we will
then provide an overview of novel ideas we have developed to adjust databases in
disaggregated setup to make efficient use of RDMA . Furthermore, we will then
do a deep dive into two approaches that leverage programmable networks and
demonstrate how database systems can utilize specialized networking hardware:
(1) Sect. 8.4 is dedicated to P4DB and its use of programmable data planes
for in-network OLTP processing. (2) Sect. 8.5 explores the concept of network-
driven data transfers and its role in efficient RDMA-based communication between
heterogeneous accelerators. Finally, we will conclude with a summary and discuss
interesting future avenues.

8.2 Background

8.2.1 Remote Direct Memory Access (RDMA)

RDMA has become the state-of-the-art communication method for distributed data-
processing systems over high-speed networks [7, 40, 43, 44, 54]. Its main benefit
is that it removes the overhead of traditional kernel-space network stacks such as
TCP/IP. Major cloud vendors have already adopted RDMA in their pursuit of faster
networking with little CPU overhead. An example of this is Microsoft Azure, which
reports that already around 70% of internal ToR traffic is RDMA [4].

Communication schemes in RDMA can be categorized as one-sided (READ-
/WRITE) or two-sided (SEND/RECEIVE) operations, which refer to the involve-
ment of the sender and receiver in the communication. For one-sided operations,
only the sender is actively involved and thus has to decide where the data should
be placed on the remote node; see Fig. 8.2. With two-sided operations, the receiver
is also actively involved in the communication and decides where to place data by
issuing RECEIVE requests before SEND requests can be issued on the sender side.
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Fig. 8.2 One-sided RDMA allows access to remote memory directly without involving the remote
CPU. Read, Write, and Atomic operations are executed by the remote NIC

This scheme simplifies remote memory management and resembles message-based
data exchanges.

Especially the one-sided RDMA operations have seen high adoption in dis-
tributed data-processing systems since they allow sender nodes to write into remote
memory directly, fully bypassing CPU cores of the receiving nodes [6, 51]. This
led to the crystalization of new computing architectures that use network-attached
memory to allow systems to scale memory independent from compute [7].

RDMA communication can run over different transport types, such as Reliable
Connection or Unreliable Datagram. The most commonly used transport is the
Reliable Connection, which requires stateful connections between any end-points.
The reliability is provided through acknowledgments and re-transmissions. While
Unreliable Datagram has the lowest complexity and overhead, most systems require
reliable data transfers and need to implement it manually in the application with
added CPU overhead [20, 21]. In addition, Unreliable Datagram only supports two-
sided operations. Thus, for the following contributions, we exclusively use Reliable
RDMA Connections, as one-sided operations are essential to achieving network-
initiated communication, and reliability is vital for most systems.

8.2.2 Programmable Switches

Programmable switches have gained widespread adoption in data centers, offering
a significant advantage to traditional fixed-function switches by enabling flexible,
high-speed packet-processing capabilities. These capabilities allow for processing
rates of several billion packets per second, attributed to the programmable packet-
processing pipeline. In networking, the control plane, typically running on the
network device’s CPU, makes routing decisions, while the data plane handles the
actual packet processing and routing, directing traffic to its destinations.

The programmability of the data plane is achieved through a reconfigurable
architecture utilizing match-action tables, enabling not just data routing but also
the offloading of application-specific logic via custom match-action rules. The P4
language, designed for creating these rules, facilitates packet-processing definition
within the data plane with a C-like syntax but disallows features like pointers and
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Fig. 8.3 The Protocol Independent Switch Architecture (PISA): all stages (Parser, MAU Stages,
and Deparser) are programmable and allow flexible packet processing in the data plane based on
packet headers and metadata

loops to ensure efficiency. This approach has broadened P4’s application beyond
network switches to devices like SmartNICs and FPGAs, enabling the efficient
implementation of performance-sensitive applications directly on the switch.

A key implementation of this concept is the Protocol Independent Switch
Architecture (PISA), widely used in commercially available programmable switches
to run P4 programs (Fig. 8.3). PISA promotes protocol independence, allowing for
flexible packet processing based on packet headers and metadata through declarative
match-action tables. In the P4DB project, for instance, we leverage this architecture
to integrate a transaction processing engine into the switch, employing customized
match-action rules for this purpose.

PISA-based switches handle specialized match-action rules starting with the
parsing of a network packet’s header in the ingress phase, which may include both
routing data and metadata to trigger specific match-action rules in the switch’s
Match-Action Units (MAUs). These MAUs, organized in a pipeline, process packets
in parallel, ensuring that each stage handles one packet at a time. For optimal
processing, interdependent match-action rules are sequenced in successive MAU
stages, allowing a packet to be processed sequentially through the pipeline before
being sent to its destination.

While PISA provides an abstract model for switch architecture, it still offers
vendors the flexibility to introduce specific implementations, such as additional
parsers for tunnel processing or specialized components for checksum computation
or executing stateful operations within the MAUs.

8.3 Scalable Data Management with RDMA

RDMA has arguably had a significant impact on database design [12, 13, 20, 50, 51,
53, 54, 54], though it presents distinct challenges due to its complexity and different
communication paradigm. To provide more context, we will provide a concise
overview of our research and discuss how RDMA is reshaping modern database
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Fig. 8.4 Overview of the relevant topics related to Scalable Data Management with RDMA

systems in the following. In particular, we discuss challenges and opportunities in
distributed DBMSs that have emerged from advancements in modern data center
networks using RDMA. An overview of the topics we will discuss is shown in
Fig. 8.4

Programming Abstractions: The Data Flow Interface
RDMA, as discussed above, has become an indispensable tool for building disag-
gregated database systems [12, 13, 24, 29, 32, 43, 45]. Unfortunately, RDMA is also
complicated since it provides only low-level abstractions (RDMA verbs) for data
processing [12]. Thus, adapting database systems for RDMA demands substantial
effort to manage various low-level details, including remote memory and connection
management, and selecting the most suited RDMA verb (cf. Sect. 8.2) for specific
workloads.

In this chapter, we introduce the Data Flow Interface (DFI), an abstraction layer
designed to simplify the utilization of high-speed networks for data-processing
systems. DFI offers simple interfaces that are well suited for a wide range of data-
intensive applications, ensuring predictable performance with minimal overhead
compared to customized, ad hoc solutions. Like the high-performance computing
abstraction MPI, we designed DFI to provide an efficient and effective way to
leverage high-speed data-processing networks. However, unlike MPI, which was
tailored for computation-intensive tasks like large-scale simulations, DFI is optimal
for data-intensive workloads [23]. As a result, DFI revises many design choices in
MPI that are not well suited for data-intensive workloads, leading to its very limited
adoption for data-processing systems [5].

The main idea of DFI is that data movements are represented as flows. DFI flows
are abstractions that provide primitives for efficient network communication. These
primitives are intended to be a foundation for building data-intensive systems and
provide many benefits over MPI (e.g., thread-centricity, pipelined communication).
DFI flows are higher-level abstractions than existing ones, such as [12, 14]. By
lifting the level of abstraction, DFI flows not only hide much of the low-level
complexity of network communication but also allow developers to declaratively
express how data should be efficiently routed to accomplish a given distributed data-
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processing task. Moreover, DFI flows allow developers to specify optimization hints,
e.g., to maximize bandwidth utilization or minimize network latency of transfers.
By using flows as the main abstraction, DFI supports a wide variety of data-
centric applications ranging from bandwidth-sensitive distributed OLAP to more
latency-sensitive workloads such as distributed OLTP or replication with consensus
protocols. The full paper can be found in [34], and the code is published here [33].

Disaggregated Storage: RDMA-Enabled Tree-Based Indexes
Disaggregated RDMA-enabled DBMSs like NAM-DB [43] demonstrate consid-
erable flexibility, allowing independent scaling of compute and storage resources.
Nevertheless, this decoupling introduces a unique challenge: the need for efficient
data retrieval via the network from remote storage. Although RDMA primitives
enable direct access to remote memory for data retrieval, the specific memory
location must be known, which is frequently not met in advance and requires
distributed indexes. Thus, many papers have proposed RDMA-enabled hashtables
as a solution to find tuples efficiently [19, 31, 39, 40, 43]. Those hashtables exploit
one-sided RDMA to access a remote hashtable first to find the required location for
the tuple.

While RDMA-enabled hashtables are an excellent fit for primary key lookups,
they are not ideally suited to all database operations. For instance, scanning and
filtering operations are common in OLTP workloads and require other index struc-
tures, so-called secondary indexes. For these scenarios, B-Tree indexes are the better
choice. Due to their capability to support point lookups, inserts, deletions, and range
scans, B-Trees have become ubiquitous in general-purpose OLTP databases [9, 15].
In this publication [53, 54], we investigated how to design a scalable RDMA-
optimized tree-based index structure for disaggregated databases. In particular, we
investigated two design questions: (1) which RDMA verb to use for efficiently
traversing the index and (2) how data should be distributed across storage servers to
optimize RDMA-based access.

Caching for Disaggregated Storage: A Fast and Cost-Efficient Storage Engine
Most disaggregated RDMA-enabled database systems are in-memory only. While
these in-memory systems are very efficient, memory prices have started to plateau,
reducing their economic feasibility. Concurrently, flash storage costs have decreased
by 30x over the past decade, starting a transition from in-memory to flash-
based databases. However, flash storage’s access latency of approximately 70
microseconds significantly exceeds RDMA’s latency of just a few microseconds.
Therefore, leveraging the combined in-memory resources of all compute nodes to
access “hot” data on remote nodes through RDMA is more efficient while reserving
cost-efficient flash storage for “cold” data that is accessed less frequently.

An interesting direction to tackle this is ScaleStore [49, 50], which is a distributed
storage engine that exploits RDMA, NVMe, and DRAM across multiple nodes. Like
a traditional single-node buffer manager, our buffer manager organizes data into
units termed pages and transparently loads and evicts pages to and from the SSD.
All data, including tables and indexes, are stored on these fixed-size pages, allowing
them to be managed transparently. However, unlike traditional buffer managers,
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ours leverages low-latency RDMA to enable a transparent memory abstraction that
accesses the collective DRAM and NVMe storage across multiple nodes. The core
of our buffer manager is a distributed caching strategy that dynamically decides
which data to keep in memory (and which on SSDs) based on the workload.

Thus, ScaleStore is a building block for building future distributed systems. It
provides efficient and transparent data access across a cluster, dynamically adjusts
to workload changes, and hides all this complexity behind a simple interface.
ScaleStore’s code is published here [48].

8.4 P4DB: The Case for In-Network OLTP

In recent years, we have seen increased use of in-network processing (INP) capabil-
ities for database applications. Offloading computational tasks to the network spans
various domains. This includes key-value stores and distributed OLAP and ML
applications [8, 18, 25, 27, 28, 30, 35, 42]. However, the exploration of INP for OLTP
workloads remains nascent, with limited work focusing on specific components
such as lock management or replication protocols [18, 42, 47]. OLTP transactions,
which typically access only a few tuples and greatly benefit from reduced latencies,
are particularly well-suited to exploit these network advancements. The unique
architecture of programmable switches, coupled with the opportunity to halve
round-trip times (RTT), positions OLTP as an ideal candidate for leveraging the
full potential of faster and programmable networks.

8.4.1 Overview of P4DB

To demonstrate the efficiency of programmable switches as transaction engines, we
introduce our prototype, P4DB, in this chapter. P4DB optimizes the execution of
OLTP in distributed DBMSs by combining two recent trends in networking, namely,
fast and smart networks. The main idea is to use a programmable switch that offers
both of these properties as an additional database node inside the network and
executes transactions directly on it (cf: Fig. 8.5). Since the memory is limited, only
hot and frequently accessed tuples are stored on the switch. This, as our evaluation
shows, is already sufficient to speed up various OLTP workloads significantly.
Executing transactions on the switch yields twomain benefits: First, transactions can
be executed pipelined and in a lock-free manner. The packet-processing pipeline of
such a switch inherently offers these properties, which can potentially scale up to a
billion transactions per second. Second, the network latency for such transactions is
cut in half because network packets only need half of the round-trip time as normal
packets between nodes because the switch sits in the middle.
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8.4.1.1 Declustered Storage Model

Since programmable switches need to handle line rates of up to a billion packets per
second, their packet-processing pipeline poses some constraints on how network
packets can access its resources. As a first step we intuitively map the entity of
a transaction to a network packet. This network packet contains all the necessary
information like the transaction type and user-supplied parameters in its payload.
Now, when a switch-transaction arrives, the switch is able to parse the contents and
execute the transactions. But before it can do that, tuples need to be first stored in
the different MAU-stages within the switch’s dataplane. Each transaction can only
access stage-local resources when the transactions flow through the switch pipeline,
as depicted in Fig. 8.6. Packets only flow from start to end through the pipeline and
cannot take over each other. In each clock cycle, all packets move one stage further.
This property allows us to define transactional properties as we do in the following
section (Sect. 8.4.1.2).

Additionally, the sequence in which transactions access tuples influences their
assignment to MAU stages. For instance, if a transaction reads tuple A and then
writes to tuple B, tuple A must be positioned in an earlier stage than tuple B. This
necessitates aligning tuple storage within the register arrays of MAU stages to the
transaction access sequence. In more detail, each MAU stage processes a subset
of operations of single transaction per cycle, with transactions moving sequentially
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through the pipeline stages. Additional concurrency control is not necessary because
there is maximally one transaction within a stage. A good data layout aims to
allocate tuples across different MAU stages in such a way that a transaction only
necessitates a single pass through the pipeline.

We use a graph-based approach to determine the optimal data layout of tuples
across MAU stages. In this method, tuples are represented as nodes, and access
patterns are depicted as directed edges between the nodes. After using a max-cut
algorithm to partition the graph into as many partitions as we have stages, the
partitions are topologically sorted to get the optimal order and optimize for single-
pass transaction execution on the switch.

Despite these optimizations, certain transactions cannot be executed in a single
pass and necessitate multiple passes through the pipeline. This can happen due to
the switch’s memory model constraints, especially when multiple operations on the
same tuple are needed.

To support isolation for multi-pass transactions, we thus provide a lock-based
execution scheme in P4DB. This is done by a so-called pipeline-lock to prevent
the concurrent execution of multiple transactions in the same pipeline. The locking
logic is located in the first MAU stage of a pipeline and can also be limited to
a subset of tuples instead of the whole pipeline. When a new transaction arrives
while another multi-pass transaction is currently in the pipeline, its execution is
prevented by scheduling it for another pass through the switch using a recirculation
port. Normal transactions resume directly after the multi-pass transaction unlocks
the pipeline lock at the start of its last pipeline pass. Nonetheless, such multi-pass
transactions are relatively rare, and a locking mechanism at the pipeline’s outset
ensures consistency for these transactions.

8.4.1.2 Transactional Properties

Overall, the switch’s pipeline provides guarantees for Atomicity, Isolation, and
Consistency for the execution of hot transactions, as we discuss next, while
Durability is guaranteed by logging on the host DBMS.

In P4DB, as discussed in Sect. 8.4.1.1, a switch-transaction is equivalent to a
single network packet. The pipelined execution of transactions is shown in Fig. 8.6.
The properties of the PISA architecture dictate that the order of transactions is fixed
and that a single MAU stage contains at most one transaction. Moreover, operations
executed in one MAU stage by one transaction happen atomically within a single
clock cycle and are immediately visible to the next transaction in the pipeline.
Hence, the pipelined execution of transactions on the switch is equivalent to a serial
execution order of transactions that results from the order as they are routed through
the pipeline. For example, in Fig. 8.6, the execution is equivalent to the serial order:
A, B, C, and then D.

Switch transactions also inherit the properties that the order of packets in a
pipeline is fixed, and each packet traverses the whole pipeline. This, in addition to
the switch’s memory model, which only allows access to stage-local resources, pro-
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vides the necessary guarantees for Atomicity of transactions. However, constraint
checks to enable consistency could potentially still lead to aborts and thus would
require additional efforts on the switch to roll back a transaction in case constraints
are violated. To avoid these additional overheads for single-pass transactions, we
use so-called constrained-writes of P4 to implement constraint checks as a single
MAU memory access. The main idea of a constrained-write in P4 is that a write is
only executed if a predicate is satisfied. This allows us to support simple constraint
checks on individual tuples within single-pass transactions, such as executing a
banking transaction only if the account balance’s value is larger than zero. However,
to support more complex constraint checks, one needs to fall back to a multi-pass
execution scheme.

The database nodes handle durability and recovery for switch transactions.
Before a switch-transaction is sent out to the switch, its operations are appended
to the local write-ahead log. To enable correct recovery of the switch state from
different local logs of database nodes (in case of a switch failure), the switch adds a
unique transaction ID to each switch transaction that it executes. This represents
the (serial) execution order of transactions on the switch. This ID is sent back
together with the results of the read and write operations of a switch transaction
to the database node in the response packet. The information is then appended to
the write-ahead log of the database node.

When the switch fails, the information from all write-head logs combined can be
used to reconstruct the execution order of switch transactions using the global ID,
and with that the most recent switch-state. Only the unique transaction ID is missing
in the database logs for transactions that were in flight during a switch failure.
The missing transaction ID can be restored from dependencies in the read/write-
set stored in the log. If no such dependency exists, any order of switch transaction
can be used during recovery for log replay.

8.4.1.3 Warm Transactions

Until now, we have two different kinds of transactions: Hot transactions that only
access hot tuples on the switch and cold transactions that only access tuples on the
nodes. However, warm transactions that access both hot tuples on the switch and
cold tuples on the nodes can appear.

Since hot transactions do not support rollback on the switch, the host DBMS
needs to ensure that all operations on cold items cannot abort after the hot sub-
transaction is sent out to the switch. Therefore, in the first step, P4DB acquires
the locks on all cold items on the database nodes. Once all locks on cold items
are acquired, P4DB then executes operations on the cold items and checks all
constraints using a sub-transaction that runs only on the database nodes. Once the
sub-transaction on the cold items is ready to commit, P4DB sends out a network
packet to the switch to trigger a sub-transaction, which then executes the operations
on the hot items. After receiving the executed switch transaction, the updates on the
hosts on cold items are committed, as we discuss below (see 2PC).
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For cases where warm transactions need to access cold tuples after warm tuples
(e.g., a write to a cold tuple that depends on a read of a hot tuple), P4DB moves
those cold tuples additionally to the switch’s memory during the offload phase.
These previously warm transactions can then be processed using the same scheme as
for hot switch-only transactions. Durability and recovery of warm transactions are
guaranteed using the same techniques as with hot transactions. Since the cold-part
of a warm transaction is considered as committed and written to the WAL before the
hot part is sent out to the switch, P4DB only needs to reconstruct the switch state in
case of failure.

8.4.2 Experimental Evaluation

We present two highlights from the experimental evaluation of P4DB. Our testbed
consists of eight nodes that are directly connected via 10G links to an Intel Tofino
1 switch [3]. For a detailed description of the experimental setup, please refer to the
original paper [17].

Workloads
The YCSB benchmark [10] resembles a key-value store, where a transaction
comprises eight read/write operations, which is a common practice [41, 46]. The
SmallBank benchmark [1, 11, 22], simulates a banking application where transac-
tions contain read-dependent-writes between accounts. As the third benchmark, we
use TPC-C [37], which, despite its design for high partitionability, includes critical
contention points, such as the “NewOrder” and “Payment” transactions.

Performance of P4DB
In this experiment, we evaluate the performance enhancements achieved by P4DB
in distributed DBMSs across the three aforementioned workloads. The results
depicted in Fig. 8.7 show that P4DB significantly accelerates different types of
workloads by executing hot transactions on the switch. Specifically, YCSB achieves
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substantial speedups with its simple transactions. Due to the switch’s architecture,
read and write tuple accesses take exactly the same amount of time. SmallBank,
with its slightly more complex transactions, also sees considerable performance
improvements. TPC-C, despite its complexity and the use of warm-transactions
that necessitate some processing on the nodes, still benefits from the switch-based
acceleration, albeit to a lesser extent.

8.4.3 Growing Hot-Sets Beyond Switch’s Capacity

In this experiment, we aim to investigate the scalability and efficiency of P4DB
when handling hot sets of varying sizes, particularly focusing on scenarios where
the hot set size exceeds the switch’s inherent storage capacity. For that, we use
the YCSB workload and incrementally increase the hot-set sizes by varying the
tuple widths to simulate different switch storage capacities. In the following, we
explore not only how P4DB manages larger hot-sets by utilizing standard nodes for
overflow but also to observe the impact on throughput as the hot-set grows beyond
the switch’s capacity.

The results, depicted in Fig. 8.8, illustrate the throughput trends as the hot-set
size expands beyond four predetermined switch capacities, with the highest being
650,000 rows. Notably, the throughput demonstrates a graceful degradation across
all scenarios as the hot-set size exceeds the switch’s capacity. For instance, even with
a hot-set size of 2 million tuples, significantly beyond the switch’s highest capacity,
P4DB maintains a throughput of approximately 3 million transactions per second,
with a hot-set more than twice as large as the switch. Looking further, this shows
that P4DB does not have a negative impact on overall system throughput when the
access patterns do not produce a hot-set that can fit on the switch’s memory.
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8.4.4 Summary

In this section, we introduced P4DB, a novel approach that utilizes a programmable
switch to enhance highly contented OLTP workloads by offloading transaction
processing to the switch. By treating the switch as an additional database node,
P4DB stores hot tuples on it and performs transaction processing with ACID
guarantees within the network’s data plane. This design offers two key advantages:
reduced latency and increased processing bandwidth from all connected nodes.
P4DB also remains effective even if the workload size exceeds switch capacity,
with fallbacks for transactions that are too complex for the switch. Our evaluation
demonstrates that P4DB effectively mitigates contention on hot tuples, resulting in
a significant throughput improvement.

8.5 Zero-Sided RDMA

Heterogeneous computing, featuring accelerators like GPUs and FPGAs, is emerg-
ing as a critical solution to the performance limitations of CPUs in cloud data
centers. These accelerators, however, are typically bottlenecked by their dependency
on host CPUs for control and data transfer. We advocate for a new communication
scheme to bypass these bottlenecks by eliminating the CPU from the control
and data path, enabling direct accelerator-to-accelerator communication via smart
switches.

Current RDMA practices involve the CPU, either through two-sided operations
requiring both sender and receiver CPUs or one-sided operations that still need the
sender’s CPU. This CPU involvement limits the full potential of accelerators in
cloud environments due to overheads and bottlenecks in coordinating data transfers.
See Fig. 8.9.
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Fig. 8.9 Network-driven communication with zero-sided RDMA vs. alternative communication
schemes. In a CPU-driven scheme 1 , the CPU is responsible for carrying out the communication.
In the accelerator-driven scheme 2 , the RDMA stack is realized directly on the accelerator. With
zero-sided RDMA 3 , the RDMA stack and communication scheme are fully offloaded into the
network, removing the need for CPUs, while only one RDMA stack (e.g., on the switch) is needed
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An alternative, accelerator-driven RDMA, faces challenges like the absence
of RDMA primitives for all accelerators and the high cost of implementing
communication logic on each accelerator, consuming valuable compute resources.
However, even with one-sided RDMA, achieving direct accelerator-to-accelerator
communication is often not possible or infeasible. As such, the communication
control flow must be relayed over the CPU [36].

With this contribution, we shift toward network-driven RDMA, offloading
the RDMA stack and communication logic to the network, particularly to pro-
grammable switches. This approach, termed zero-sided RDMA, leverages the
switch’s central network position to manage data transfers without involving CPUs
or requiring accelerators to support RDMA natively. Programmable switches are
ideal for implementing zero-sided RDMA due to their ability to handle complex data
operations and efficiently coordinate transfers, supporting diverse communication
flows and distributed data management tasks while ensuring scalability at line-rate
speeds.

8.5.1 Overview of Zero-Sided RDMA

Our approach to zero-sided RDMA leverages the centralized programmable
switch’s capability to manage data traffic directly, enabling seamless communi-
cation between processing units (PUs) without their active involvement. To realize
zero-sided RDMA, we have to enable a switch-driven data transfer scheme that
transfers data from producers to consumers without their active involvement. This
section outlines the mechanism and hardware requirements for implementing zero-
sided RDMA.

8.5.1.1 Core Challenges of Realizing Zero-Sided RDMA

A core challenge of realizing zero-sided RDMA is to map the data transfer logic
to the pipelined execution model of a switch, which provides a limited set of
instructions and memory per stage. In addition, since all connected PUs are not
directly connected to each other but are connected to the switch, the switch must
adhere to the exact protocol to be compliant with off-the-shelf RDMA NICs.
This includes managing stateful RDMA connections with reliability and correctly
propagating congestion- and flow-control information from consumers to producers
within the switch’s data-plane to guarantee execution at line-rate.

8.5.1.2 Communication Abstractions

At the heart of our approach is a circular buffer abstraction for each PU, simplifying
the interface between the network and PUs in zero-sided RDMA. This buffer allows
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PUs to push and pop data items using straightforward local memory operations
while the switch handles data transfer asynchronously. Coordination is maintained
through head and tail pointers in the buffer, indicating where data items can be
written and read, respectively.

8.5.1.3 Flow of Data Transfers

The process of data transfer involves the switch mirroring the state of producer and
consumer buffers to identify when to initiate transfers. The steps are visually shown
in Fig. 8.10.

The process of transferring data involves several critical steps that update circular
queue pointers and write the data into the designated slot, ensuring efficient
movement of data without requiring direct communication between processing
units (PUs). Initially, the switch initiates the transfer by issuing an RDMA READ
command to access data within the producer’s buffer. Once the switch receives the
data from the READ operation, it transforms this data into an RDMA WRITE
request, which is then directed to insert the data into the consumer’s buffer.
Following the successful acknowledgment of the RDMA WRITE operation, the
consumer’s head pointer is updated to indicate the addition of the new item. After
that, the producer’s tail pointer is adjusted to mark the space that the transferred
data occupies as available for future use. This sequence of actions ensures that data
is moved efficiently between producers and consumers without necessitating direct
interactions between their respective processing units.
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Fig. 8.10 Sequence of network packets for a switch-driven 1:1 data flow. The switch transfers data
by reading from the producer and converting the READ response into a WRITE to persist the data
in the consumer memory
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8.5.1.4 Hardware Requirements

To support zero-sided RDMA, devices must have suitable memory to host the
circular buffer structure, including enough space for head and tail pointers and
the data items themselves. This memory should also be accessible by a standard
RDMA-enabled NIC. Furthermore, the device’s memory consistency model must
ensure the orderly execution of writing to an item and subsequently updating the
head pointer; devices with weaker consistency models may require memory fences
to enforce this sequence.

8.5.2 Switch vs. SmartNICs

Network communication offloading can be centralized or decentralized. Decentral-
ized approaches use SmartNICs, like Nvidia BlueField or Mellanox Innova, for
RDMA operations, allowing direct accelerator or GPU communication without
CPU intervention. Despite enabling specialized compute units to manage com-
munications, they face challenges with complex one-sided RDMA schemes and
high costs due to the necessity for a SmartNIC per server, with costs significantly
higher than standard RDMA NICs. Conversely, centralized approaches that use
programmable switches for direct accelerator communication offer line-rate pro-
cessing without performance bottlenecks and avoid the complexities of distributed
coordination, resulting in lower hardware costs for scale-out solutions. In data
center deployments, single-rack setups with Top-of-the-Rack switches enhance job
processing locality and bandwidth for distributed operations. While zero-sided
RDMA supports cross-rack communication, this setup also opens up areas for
future investigation, such as latency, bandwidth, congestion control, and failover
mechanisms in multi-switch scenarios. Encrypted data streams in data centers, a
challenge for in-network processing, do not affect zero-sided RDMA, as it only
requires header modification and packet forwarding.

8.5.3 Advanced Communication Flows in Zero-Sided RDMA

Zero-sided RDMA introduces several advanced communication flows and features,
which are discussed below, to address the complexities and performance bottlenecks
in distributed Database Management Systems (DBMSs).

N:M Shuffle and Load Balancing
For distributed joins and other tasks requiring data shuffling, zero-sided RDMA
simplifies the N:M communication flow. By centralizing connections to the switch,
it facilitates efficient coordination between multiple producers and consumers
within the switch’s data-plane, requiring only one connection at the consumer side
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for all incoming data. This model not only reduces memory overhead but also
simplifies data polling for PUs. Similarly, for load balancing, zero-sided RDMA
automates the distribution of workloads across PUs without the need for intricate
coordination mechanisms, thanks to the switch’s independent management of data
transfers for each consumer.

N:M Replication with Global Order
The multicast communication flow with ordering is another key feature, ensuring
globally ordered data distribution from producers to all consumers. This is espe-
cially beneficial for replicated joins or state replication tasks, where conventional
RDMA multicast methods are inadequate due to their dependency on unreliable
transport and two-sided communication, which increases CPU overhead.

Fine-grained Quality of Service (QoS)
Addressing the demand for fine-grained QoS in DBMSs, zero-sided RDMA allows
for critical job prioritization over less crucial tasks without the complexity of
network reconfiguration required by Priority-based Flow Control (PFC). By uti-
lizing congestion control primitives native to RoCE, it supports dynamic bandwidth
allocation and flow prioritization at a granular level, enhancing the overall efficiency
of data exchanges.

8.5.4 Experimental Evaluation

We present two highlights from the evaluation of zero-sided RDMA. For a detailed
description of the experimental setup, please refer to the original paper [16].

8.5.4.1 Efficiency of Network-Driven Transfers

In this experiment, we compare traditional CPU-driven RDMA against zero-
sided RDMA for direct accelerator-to-accelerator communication between two
nodes. All data transfers occur directly between GPUs without intermediate main
memory copies. Both approaches use identical persistent GPU kernels and buffer
abstractions for processing data items. In the CPU-driven model, the co-located
CPU is responsible for detecting new items in the buffer and initiating RDMA
transfers on behalf of the GPU. The results, shown in Fig. 8.11, highlight the
bandwidth differences between CPU-driven and network-driven communication for
four concurrent flows using 4KiB items. Achieving comparable performance to
zero-sided RDMA requires multiple CPU cores, because in the basic setup with
a single CPU thread transfers are CPU-bound. On the other hand, the zero-sided
approach shows good scalability while also eliminating the need for dedicated CPU
resources per flow. Additionally, the application does not need to re-implement the
communication on the accelerator and only uses the memory-based abstraction, as
discussed above.
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Fig. 8.11 GPU-to-GPU
shuffle. Zero-sided RDMA
outperforms traditional
CPU-based schemes without
the need to co-locate a CPU
per accelerator
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Fig. 8.12 QoS flow prioritization between two PUs with 3 concurrent flows. Prioritization changes
every 5 seconds

8.5.4.2 Fine-Grained Flow Prioritization

In this experiment, we investigate the fine-grained (per flow) prioritization capa-
bilities provided by our zero-sided communication scheme. Figure 8.12 shows the
individual data bandwidth for three active concurrent flows between two nodes over
20 seconds, with the ratio altered every 5 seconds. Our system demonstrates a swift
and efficient response to changes in the prioritization of different flows, with the
processing units remaining oblivious to the adjustments. Centralized initiated data
transfers allow fine-grained prioritization of different flows, which is not supported
natively within RDMA.

8.5.5 Summary

In this chapter, we introduced zero-sided RDMA, a new communication scheme that
enables direct RDMA-based communication between accelerators without requiring
CPU coordination. All communication and data transfers are fully managed by
the network using a programmable switch that can access the PUs memory
directly. Additionally, zero-sided RDMA facilitates efficient data shuffling between
heterogeneous hardware devices without needing a full RDMA stack on each
device. Our evaluation demonstrated that zero-sided RDMA outperforms traditional
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CPU-driven one-sided RDMA schemes for accelerators and offers efficient commu-
nication flows tailored for disaggregated cloud DBMSs.

8.6 Conclusion and Future Directions

As discussed in the introduction, RDMA represents just the initial step toward
future-ready disaggregated database systems. To fully leverage the rapid advance-
ments in networking bandwidth, database systems must specialize their networking
stack even more. In this chapter, we have explored programmable switches, which
offer a compelling programming and execution model. When fully utilized, these
switches can lead to significant performance improvements.

However, this exploration is only the beginning. Future work could include
SmartNICs and SmartSSDs and adopt a comprehensive approach to integrating all
programmable accelerators within a complete database system. This holistic view
is essential for unlocking the full potential of modern networking technologies in
databases.
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Chapter 9
Managing Very Large Datasets on
Directly Attached NVMe Arrays

Gabriel Haas , Adnan Alhomssi , and Viktor Leis

Abstract High-performance solid-state drives based on flash memory have
replaced hard disks as the primary storage medium. Modern servers can host
ten or more NVMe SSDs, and the aggregate bandwidth is approaching main
memory bandwidth. In response to this evolution, this project evaluates the
performance trade-offs posed by the abstraction layers and interfaces involved in
I/O management. We experimentally slice through the software stack, exploring the
limits of how efficient I/O can be done, and provide a discussion about durability.
Finally, we discuss the implications of fast storage devices on the architecture
and implementation of database storage engines. Overall, our work shows that
exploiting the full potential of modern NVMe storage arrays is achievable but
requires substantial engineering effort.

9.1 Introduction

Handling storage I/O has always been a key task for database systems. Historically,
storage devices were slow, making disk accesses the performance bottleneck for
traditional database systems. Hence, disk-based database systems spend a lot of
effort in minimizing the number of disk accesses, especially random accesses.

The emergence of much faster flash-based solid-state drives (SSDs) around
2010 changed this, initially generating enthusiasm for the technology. Much of this
pioneering research focused on using flash SSDs as accelerators [7, 9, 12, 24, 31,
32, 44, 45] and on building specialized storage hardware for database systems [25].
However, at that time, flash was expensive, and much of the research focus in the
database community shifted toward main-memory database systems [13, 27, 47].
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Fig. 9.1 Exponential growth
in SSD bandwidth.
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In more recent years, the focus remained on specialized storage hardware [11,
35, 43] and new interfaces for SSDs, like Open Channel SSDs [8, 40]. The interest
in commodity SSDs for database systems was limited. Much research in the storage
field went into Optane Persistent Memory [15–17, 30, 33, 48, 49], high bandwidth
memory [41, 42], near and in-memory processing [5, 6, 14, 22, 28], heterogeneous
memory architectures, and exploiting fast networks for distributed storage [29, 52].
We concluded that research on flash storage would be valuable for the DFG Priority
Program 2037 and the database system community as a whole.

In early 2020, we looked at the state of storage I/O using multiple directly
attached NVMe SSDs [18]. Even then, it was difficult to fully exploit the perfor-
mance of multiple SSDs. Since then, NVMe SSDs have become mainstream, and
their bandwidth has quadrupled. Figure 9.1 illustrates this exponential bandwidth
growth over the past half decade.

During that time frame, other promising storage technologies such as the
aforementioned persistent memory have not achieved anticipated success and
DRAM prices have stagnated. Against this backdrop, flash-based NVMe storage
has emerged as the most economically viable solution for large datasets. There have
also been notable advancements in software that play a critical role in enhancing
I/O performance for NVMe storage. A key example is the Linux Kernel’s I/O
interface, io_uring, which has attracted significant interest and seen substantial
progress. These hardware and software changes have significant implications on
the performance of modern NVMe storage and how we perceive and manage I/O.

Research on the impact of the NVMe I/O stack on performance is sparse.
Many papers focus on how storage engines and key value stores can be built for
modern storage hardware [10, 19, 38, 51]. These papers focus on the system side,
while this chapter provides a comprehensive analysis that includes the operating
system I/O stack, the hardware, and the application itself. Section 9.2 presents
microbenchmarks that evaluate the performance impact of all I/O layers, including
the I/O interface, page cache, and file system. Section 9.3 discusses common pitfalls
when working and benchmarking SSDs that we have encountered in the last years.
Section 9.4 shows how we engineered our storage engine LeanStore to exploit
NVMe-era storage performance.
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9.2 Slicing Through the I/O Stack Abstraction Layers

In 2019, we investigated how fast NVMe arrays can be exploited by database
systems [18]. This work aims to reassess the experiments utilizing the newer-
generation hardware and incorporating knowledge accumulated in the last years.
Since then, two subsequent generations of PCIe have emerged, resulting in a
quadrupling of bandwidth. At first glance, the I/O stack seems similar to how it
was before, but there has been substantial development on the software side as well.

9.2.1 Experimental Setup

All experiments were carried out on Linux 6.7, which is the latest kernel version
available at the time of writing. Our server is equipped with an AMD EPYC
9654P Genoa processor with 96 cores (192 hardware threads) and has 384GB of
DRAM using 12 DDR5 channels, achieving over 300GB/s of memory bandwidth.
The system has 128 PCIe 5.0 lanes and 8 Kioxia CM7-R PCIe 5.0 SSDs with
3.8 TB capacity per SSD. Each SSD is specified to achieve 2.7M random 4KB
I/O operations per second (IOPS), 14.000MB/s sequential read bandwidth, and
6.750MB/s sequential write bandwidth. When all 8 SSDs are used in parallel,
this amounts to over 100GB/s of I/O bandwidth, which is comparable to the main
memory bandwidth of many servers.

We compare two simple workloads: random reads and a mix of 75% random
reads and 25% random writes. All experiments use 4KB pages, which maximizes
the achievable number of I/O operations. Unless otherwise mentioned, we rely on
the fio benchmarking tool.

9.2.2 Slicing Through the I/O Stack

Baseline: Synchronous IO We disable features of the I/O stack step by step,
with Table 9.1 showing the resulting performance for our read-only and mixed
workloads. The baseline is accessing a file on a mounted file system through the
POSIX interface. Using pread and pwrite, we submit read and write operations
synchronously, in a blocking fashion, to the kernel. Each I/O operation goes through
several layers: the file system, the page cache, the block layer, the NVMe driver, and,
finally, the SSD. Each of these abstraction layers contributes to considerable CPU
overhead, resulting in relatively low performance, achieving only 810k read IOPS.
This is less than 4% of what the hardware can do when compared to its specification
of 2.7*8 = 21.6M IOPS.

fsync The fsync system call guarantees that dirty pages are written to non-volatile
storage. It will flush dirty pages from the page cache to storage; if necessary, it
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Table 9.1 Slicing through the layers of abstraction: comparison of I/O operations and cycles in
different setups under read-only and mixed workloads. Max IOPS and cycles/operation, for read-
only and a 75%/25% read/write workload using fio [4]. Maximum achievable IOPS was measured
using optimal number of threads for the specific setup. Efficiency in terms of cycles/io was done
with 64 threads for pread/write setups and 8 threads for the asynchronous interfaces (io_uring and
SPDK)

100% read 75% read, 25% write

read cycles [k] total cycles [k]

M IOPS per IO M IOPS per IO

pread/pwrite/fsync 0.81 87.2 0.09 332.2

− fsync 0.81 87.2 0.05 163.5

− page cache (O_DIRECT) 6.07 48.1 2.28 56.4

io_uring 6.73 28.4 1.77 32.9

− file system (XFS) 21.60 22.4 13.19 22.7

− RAID 0 (md) 23.30 19.0 13.20 18.2

+ uring opt. (polling, passthru) 23.30 9.7 13.27 9.9

SPDK 23.27 1.6 13.18 2.3

also moves data from volatile caches on the SSD to flash memory. Surprisingly,
the mixed workload actually gets worse after removing the fsync system call. One
theory for this is that Linux’s page cache eviction algorithm is too slow to keep up.
When using the fsync call, the page cache is forced to evict pages on a different
code path. We discuss flushing and durability in more detail in Sect. 9.2.5.

Page Cache The next step is to remove the page cache from the I/O path. Most
database systems implement their own buffer pool, which makes the page cache
unnecessary and redundant. Using O_DIRECT results in a large performance
improvement, with read IOPS increasing by an order of magnitude and the efficiency
in terms of cycles/IO halving. By removing the page cache, we can unlock the
potential of NVMe-era performance, achieving over 6 million read operations per
second (which corresponds to 25GB/s). However, this performance is still far from
reaching the hardware’s full potential, especially for mixed workloads, which only
achieve around 2 million IOPS (MIOPS).

Asynchronous IO: io_uring Achieving millions of IOPS using a synchronous
model requires hundreds of threads, resulting in extreme thread oversubscription.
The next obvious optimization is therefore to switch from hundreds of blocking
threads to a non-blocking I/O library such as io_uring. When only eight threads are
used (same for all following efficiency experiments), the CPU efficiency increases
substantially. However, the maximum throughput increases only slightly.

File System We next investigate the file system, which provides useful features at
the cost of additional OS-level CPU overhead. Removing the file system and directly
accessing the underlying Linux software RAID 0 block device (i.e., /dev/mdX) gives
a large increase in overall throughput. The results indicate that file systems are the
main bottleneck on fast NVMe arrays. Without a file system, it is possible to get
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the specified bandwidth of our system: 21 million read IOPS, or almost 90GB/s.
Note, however, that achieving these results requires microbenchmarks that consume
the entire server CPU for I/O submission and polling. This leaves few resources for
actual data processing.

RAID Instead of using software RAID provided by the operating system, RAID
can also be implemented directly by the application to bypass another layer of
abstraction. Interestingly, without RAID, it is possible to achieve higher read
throughput than SSDs are specified for. However, this still does not solve the CPU
efficiency problem: 19k cycles are required per I/O operation. Using 19k CPU cycles
for 23.3M IOPS implies that our high-end 96-core CPU is completely occupied
doing I/O.

Polling io_uring comes with a broad palette of optimization settings, which
we investigate in 9.2.3. By using polling-based I/O and the new I/O Passthru
interface [23], it is possible to halve the number of cycles required. Passthru saves
CPU cycles by bypassing the file system and block abstraction. However, we argue
that 10k cycles per I/O operation is still very high, leaving little room for data
processing.

User-Space IO: SPDK A radical approach for doing I/O is to bypass the kernel
altogether. With the SPDK NVMe driver [46], an application can directly issue
I/O requests in user space. As shown in the table, using the SPDK NVMe driver
increases efficiency substantially, achieving a rate of 1600 cycles per I/O. It should
be noted that for the SPDK result, we used our own benchmarking tool to avoid
fio bottlenecks. With our own tool, the io_uring (with polling and passthru enabled)
overhead is around 5.5k cycles

9.2.3 Secret Flags in the Kernel Universe

io_uring Linux Kernel Team [36] comes with several settings for tuning its
performance, which we investigate in the following. For comparison, we also
include its predecessor for asynchronous I/O: libaio. As Fig. 9.2 shows, it is, in
principle, possible to achieve the full I/O bandwidth with both interfaces and all
measured settings. However, the number of threads required to reach maximum
performance varies considerably. Libaio requires 14.2k cycles per I/O operation
even with a single thread; higher thread counts would incur additional CPU
overhead for synchronization.

Polling-based I/O Compared to libaio, io_uring showcases greater efficiency even
in its default setting, requiring 10.6k cycles per I/O in the single-threaded setting.
The first optimization is to switch from the interrupt-driven model to polling-based
I/O completion (IOPOLL). This requires adjusting the NVMe driver poll_queues
setting.
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I/O Passthru Joshi et al. [23] is an extension to io_uring that allows for the
submission of arbitrary NVMe commands through the kernel to NVMe devices. The
change in io_uring was necessary, as it requires larger entries in the submission and
completion queues. This will allow the quick adoption of new NVMe commands
without necessitating changes to the kernel. The new I/O path is also more
lightweight and leads to better scalability since it does not go through all the
abstraction layers. This improvement can be seen in the figure, where cycles have
been reduced by almost 30%, from 8.6k to 6.3k.

Other Flags The kernel pins data buffers to prevent eviction or relocation during
an I/O operation. Instead of pinning the buffer for every operation, buffers used
for I/O can be registered with the kernel and only pinned once. Additional flags
(REGISTER_RING_FDS and REGISTER_FILES) can further enhance io_uring
efficiency. This leads to a cycle reduction of approximately another 30% when using
all three flags.

Batching Next, we consider the effects of batching I/O requests. Batching opera-
tions together reduce the overhead otherwise required for individual requests. This
reduces the number of context switches and kernel overhead, as well as required
Memory-Mapped I/O (MMIO) calls in the NVMe driver. In the model we proposed
for LeanStore [19]—where every database thread communicates with every SSD—
batching is difficult. In this model, the benefits from batching would be limited due
to the small number of subsequent requests that could be batched. Nonetheless, we
want to show the significant impact of batching in micro benchmarks, as can be
seen in the figure with io_uring and even more so with SPDK. Note that SPDK only
benefits from the reduction of MMIO calls to the SSD, while with io_uring batching
also reduces the number of system calls.

SQPOLL For similar architectural reasons, we omit the SQPOLL flag. SQPOLL
is used to eliminate system calls. When SQPOLL is enabled, the kernel spawns
threads that poll on the io_uring submission queue to check for incoming requests
and to handle polling on the NVMe completion queues. While it removes context
switching, it essentially just shifts work from user threads to kernel workers. In our
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architecture, this is undesirable since it introduces unpredictability and necessitates
tuning of the number of kernel threads.

9.2.4 A Lower Bound for I/O Handling

In Sect. 9.2, we discussed that the number of cycles necessary for I/O can be as low
as 1.6k when using SPDK (without batching). It raises the question why a simple
I/O request needs to consume over a thousand CPU cycles and what the true lower
bound is.

The NVMe protocol is simple and efficient once everything is set up: An I/O
submission is in essence setting up the request parameters, i.e., request type, data
pointer, SSD offset, and size on the submission queue, and a memory-mapped I/O
(MMIO) call to notify the SSD of the new request. When interrupts are disabled, the
application can check (poll) for updates on the completion queue. Transferring the
data to and from the SSD is handled by the Direct Memory Access (DMA) engine
and does not require additional CPU cycles.

As Fig. 9.3 shows, with SPDK, the lowest number we could achieve is 733
cycles/IO when enabling batching (with delay_cmd_submit). This was measured
using a single thread with about 5.4M IOPS in our I/O benchmarking tool. The
benchmarking tool uses the same I/O backend used in LeanStore that supports all
I/O interfaces. Though less than other benchmarking tools, the tool itself and the
I/O backend incur some overhead. Employing a minimal benchmarking tool that
uses SPDK without any indirection results in about 12.7M IOPS or 292 cycles (696
instructions). These results closely align with figures reported on the SPDK blog
[26].

However, efficiency can be increased further. Even when using SPDK directly, it
itself is not necessarily a lightweight library. As described, submitting an I/O request
to an NVMe queue is a very simple operation that should not take hundreds of
instructions. The SPDK NVMe driver implements features like queueing, splitting
requests, handling admin commands, creating tracking objects, and more. Hence,
we went one step further and optimized the remaining I/O path to do the bare
minimum to submit requests on the NVMe queues.

Fig. 9.3 Maximum I/O
bandwidth achievable in a
single thread. Values denoted
with “c” are the
corresponding cycles/IO.
“iob” is the I/O backend used
by LeanStore. “min” uses
SPDK and NVMe without the
“iob” overhead
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These optimizations allow us to achieve the full SSD bandwidth of 23M IOPS on
a single thread (“modified” in Fig. 9.3). A request is now handled in 161 cycles (276
instructions). This is the lower bound in this microbenchmark, where we are now
limited by SSD bandwidth. Further optimizations would merely reallocate saved
cycles to additional polling on the completion queue. A real system, on the other
hand, could benefit from this and use the additional saved cycles for other useful
processing.

It should be noted that all SPDK runs here use the delay_cmd_submit flag, which
delays the MMIO call until the next poll call. The “modified” version explained
below does not use this flag but similarly issues one MMIO call for multiple I/O
requests. Not limiting the number of MMIO calls results in an upper limit of
5.75MIOPS.

9.2.5 Thank God It’s Fsynced: Durability

In our first paper on NVMe using consumer SSDs [18], we reported a significant
performance degradation when using the fsync/fdatasync system call. The fdatasync
system call is used to let the operating system know that dirty pages should be
flushed to the storage device. This is relevant for pages that are cached in the Linux
page cache (i.e., when O_DIRECT is not used). The operating system then writes
dirty buffer pool pages to storage. The system call also affects the file system to
ensure that the necessary metadata, journal entries, and modified pages are made
durable.

The operating system will also issue a flush command to the SSDs. This is
necessary if the SSD has volatile write back caches (e.g., DRAM), which then
have to be written to flash. On consumer SSDs, the said flush command incurs high
latency. We have observed latency of 1.7ms, which is comparable to flash write
latency.

Enterprise SSDs are not constrained by the small M.2 form factor. Therefore,
they can contain capacitors that guarantee a short time of backup power in case of
power loss. This is enough time to bridge power until all dirty data from the cache is
flushed to flash memory. Therefore, enterprise SSDs report via NVMe that they do
not utilize write-back caching, ensuring completed I/Os are durable. Linux exploits
this by not issuing a flush command when fsync/fdatasync is called. When using
O_DIRECT, the fdatasync call becomes a no-op.

9.3 Benchmarking and Hardware Pitfalls

It is challenging to run SSD benchmarks correctly. Many results found are inac-
curate, not representative, or plainly incorrect. This includes incorrect throughput
numbers, unrealistic latency values, or the use of benchmark tools that cannot fully
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exploit NVMe performance. Errors can also arise from running benchmarks on
unsuitable abstraction layers, such as evaluating an SSD’s performance using results
from buffered I/O, bottlenecked RAID configurations, or file systems. We know
this because we have made many such mistakes ourselves and have learned from
them the hard way. Hence, in this section, we describe below how to avoid common
pitfalls.

9.3.1 Don’t Trust a Benchmark You Did Not Do Yourself

Initialization A common reason for misleading performance numbers is failing to
correctly initialize the SSD. Reading data from SSD that has never been written
before (i.e., deallocated or unwritten blocks) is defined semantically in the NVM
Command Set Specification [39] but leads to unpredictable performance. This also
applies to reading data beyond the SSD’s logical block range. According to the
NVMe specification, the SSD can either return all-zeros or all-0xFF, depending
on the configuration. In terms of performance, depending on the SSD model, we
have observed three cases for uninitialized reads: Uninitialized reads can be faster,
slower, or equally fast compared to reading initialized data. Benchmarks that read
uninitialized data are therefore not meaningful.

SSD State Another reason for obtaining incorrect or inconsistent performance
numbers involves disregarding the current state of the SSD. Significant differences
in write speed are observable when comparing an empty SSD (best case) with an
SSD filled to 100% capacity by small random writes (worst case). In the case of
a full SSD, the garbage collector has to do a lot of internal copying to free up
empty blocks, which can result in a lower write speed by an order of magnitude.
For write-intensive benchmarks, it is therefore crucial to ensure that the SSD state
is comparable.

Reproducibility and Representativeness To achieve reproducible benchmark
results, the SSD should be erased after every experiment, which involves writing
a substantial amount of data. Erasing can be done using the blkdiscard or sanitize
commands. Blkdiscard deallocates logical blocks, meaning the mapping in the
FTL from logical to physical blocks is deleted. The sanitize command further
erases all flash blocks. This means that performance is reproducible, but it is not
necessarily representative of all states an SSD can be in. Researchers should also
perform prolonged experiments where the entire SSD is overwritten multiple times
to reach the steady state and examine performance at various fill levels. Another
reason for non-reproducible I/O results can be the OS scheduler moving threads
to different CPU cores, which can lead to performance variations. Furthermore,
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peculiar effects can arise in multi-threaded benchmarks, if all thread-local random
number generators share an identical seeding value.1

9.3.2 The Strange Case of the IOMMU and Its Root-Complex

IOMMU Overhead The I/O Memory Management Unit (IOMMU) manages
direct and secure connection between I/O devices and system memory. It is
responsible for remapping physical memory addresses to virtual ones for I/O
devices. This enables the system to benefit from hardware-based I/O virtualization.
By controlling and restricting access to main memory, the IOMMU can mitigate
unauthorized and malicious accesses to memory from other processes or virtual
machines through the I/O device.

Much as the previous section noted with software, hardware abstraction also
carries a cost. Table 9.2 demonstrates the difference in terms of latency for single
read operations is quite small with a difference of only 0.81 µs. However, the number
of cycles that is necessary per I/O request takes more than 2k additional cycles,
which is 46% more. In our system that can reach 23MIOPS, this is a substantial
number of threads that must be added. Further, we have noticed that our SSDs do
not work with SPDK when using the vfio-pci driver, which is required when the
IOMMU is enabled.2

Root-Complex Limitations In an EPYC Milan (PCIe 4.0) server with 128 PCIe
lanes, we encountered a limitation where the PCIe root-complex began to pose a
bottleneck at 10M IOPS. The server contains four PCIe root-complexes, and if more
than four SSDs were attached to one complex, performance was limited. In such
cases, it is beneficial to increase performance by physically spreading the SSDs
across the root-complexes.

Table 9.2 IOMMU latency overhead (at iodepth=1) and cycles per I/O (iodepth=256) on a single
thread with 4KiB reads. Measured with 8 SSD using fio (io_uring with poll + passthrough)

read latency [us] cycles / io [k]

IOMMU off 63.96 4.39

IOMMU on 64.76 6.47

1 Unfortunately, this is the default setting in fio when used together with the numjobs flag.
2 https://spdk.io/doc/system_configuration.html.
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Fig. 9.4 Where is the bug?

9.3.3 Too Hot to Handle

In Fig. 9.4, we visualize a scenario where overall system and I/O performance is
initially stable but drops after some time. To investigate, we interrupted the program
using the gdb debugger to inspect its internal state, finding no obvious issues.
Surprisingly, after continuing execution in the debugger, performance temporarily
returned to its original high level. The behavior is reproducible; after a certain period
of time, performance plummets once again, only to be rectified by pausing the
application in the debugger.

Utilizing the smart commands incorporated in the NVMe protocol for device
temperature monitoring, we eventually found out that the root cause is SSD
overheating. Consumer-grade SSDs (M.2) do not have active cooling systems, and
often not have a heat sink mounted. Enterprise SSDs, in contrast, have a larger
form factor and can use the casing as a heat sink, and we have never observed
such behavior. This can be verified on SSDs that support the OCP (Open Compute
Project) NVM extension, which includes counters for thermal throttling events.

9.3.4 The Shark

Another peculiar performance bug emerged during tests of LeanStore with TPC-
C workloads. The transaction rate would be stable for a while and then suddenly
collapse at seemingly random times. It would then recover over a period of 20–30
seconds and return to full speed. In terms of transaction rate and consequently I/O
bandwidth, it would resemble an upside down shark fin, as seen in Fig. 9.5.

Notably, this unusual behavior did not manifest in any other benchmark that used
SSDs, such as random read/write micro benchmarks or YCSB-like read/write setups
in LeanStore. Also, no such performance decrease was observed when the TPC-C
transaction rate was limited or fewer threads were used, which made debugging
even harder and seemed to indicate that this was a locking issue. One clue emerged
when stopping the execution in the slow part: many threads/tasks were queued
to get a single lock. This observation indicated it could be a synchronization
issue in the I/O stack of LeanStore. We spent several days reevaluating locking
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Fig. 9.5 Read and write bandwidth for multiple replays of a TPC-C I/O trace

interactions that could possibly lead to such behavior. However, these observations
were symptomatic rather than causal.

To isolate the problem and rule out potential LeanStore issues, we recorded the
I/O trace and wrote a program to replay it. To our surprise, when replaying the
I/O trace in a minimal, single-threaded application, the issue persisted. Therefore, it
was clear that our performance problem had to be due to an SSD issue. Even more
surprisingly, after updating the SSD firmware, the previously mentioned “shark fin”
performance pattern disappeared, resulting in consistently stable performance.

9.4 I/O in High-Performance Storage Engines

This section outlines the implementation of a high-performance storage engine that
can capitalize on the I/O performance detailed in preceding sections. Initially, we
will conduct a back of the envelope estimation of the available CPU budget per
operation when the SSDs are saturated. With our 96-core AMD Genoa CPU system
and eight SSDs, this gives a result of 11.2k cycles/IO (2.7GHz * 96cores / 23M).

Using io_uring with polling (without passthru, optimization flags, or batching),
this would mean 8.6k cycles (or 79 cores) are required just for I/O handling. This
leaves us with only 2.6k cycles for all the other database components. This is not
a lot, considering we have query processing, index traversal, concurrency control,
logging, and page eviction. Given these cycle constraints, it is critical to ensure all
components of the database system are well optimized and streamlined.

9.4.1 Visible Without Looking Glass

To build a storage engine that can exploit the high performance of modern NVMe
arrays, a fast in-memory system is required. That means spending 93.2% of CPU
instructions on non-useful work as observed in the Shore system [20] is infeasible.
We have solved this with our storage engine LeanStore [1–3, 21, 34, 50], which can
handle transactions using an order of magnitude fewer instructions than those used
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Fig. 9.6 Revisiting OLTP through the looking glass [20], comparing Shore and LeanStore for the
in-memory TPC-C neworder transaction

by Shore. In LeanStore, more than 70% of instructions are used for useful work and
less than 3% is used for buffer management (Fig. 9.6). The challenge that has to be
solved next is to keep the overhead of the non-useful work as small as possible even
when data size exceeds the buffer pool.

9.4.2 NVMe-Enabled Performance in Storage Engines

In order to achieve fast performance in out-of-memory workloads with minimal
cycles, the following optimizations to the original version of LeanStore were
necessary [19]:

• The original LeanStore implementation [34] used a global lock for I/O man-
agement. With multiple SSDs, this immediately became the bottleneck. We
addressed this issue by introducing a partitioned lock for the whole eviction and
I/O path.

• While 16KiB pages were a suitable size for in-memory workloads, we demon-
strated that one should use 4KiB pages for optimal performance with current
SSDs. Although this should theoretically quadruple throughput, it did not
significantly increase performance due to subsequent bottlenecks that needed to
be addressed as well.

• We implemented numerous CPU optimizations, such as application-level RAID
and streamlining the eviction and I/O path, by removing memory allocations and
locks.

• We implemented user-space threading to address high thread-oversubscription.
This eliminated the need for difficult-to-tune background threads and resulted in
a more symmetric and robust system.

• We introduced optional kernel bypassing I/O to maximize CPU efficiency.

Figure 9.7 shows the results for running TPC-C and random lookups on
LeanStore on our 92-core PCIe 5.0 platform. When compared to our previous
system that utilized eight PCIe 4.0 SSDs and a 64-core CPU, TPC-C performance
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increased by 1.6x, and random lookups improved by 1.8x. This performance
increase exactly matches the increase in single SSD read bandwidth from 1.5M
to 2.7M IOPS (1.8x) for the two systems. These results show that with continuing
hardware advancements, LeanStore maintains its ability to attain unparalleled out-
of-memory performance.

9.4.3 Exploiting New Kernel Features

Having implemented these optimizations, we now take a look at recent changes
and the new knowledge we have gathered since then. First of all is the new feature
provided by io_uring: the passthru mode [23]. In terms of maximum performance,
seen in Fig. 9.8, its impact is minimal, as the maximum bandwidth can also be
reached without it. The efficiency, as measured by cycles per transaction, does
increase when running LeanStore with 8 threads (Fig. 9.9).

The next step would be to use the register buffer flag, discussed in Sect. 9.2.3.
This flag is not applicable to the use case of a buffer pool that contains millions
of pages. All of these millions of pages would have to be registered with io_uring,
which is currently not possible. There appears to be a limit of 16k buffers that can
currently be registered. Another approach could be to register a limited number of
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data buffers that are only used for I/O and then copy the data to the eventual location
inside the buffer pool. However, this defeats the purpose and due to the additional
memory copy, it would likely perform worse. In situations where the data has to be
copied anyway, like when using compression, the flag would be beneficial.

LeanStore employs a symmetric design [19] in which each thread is responsible
for all database system tasks, including I/O. This design offers numerous benefits;
for I/O, it means that every thread can manage its own requests without any
synchronization. It aligns remarkably well with SPDK or, to be more precise,
the NVMe protocol. The NVMe protocol allows the creation of multiple queues
that can be used independently. io_uring also shares this approach with its queue-
pair architecture. In Sect. 9.2.3, we discussed that io_uring profits a lot from
submit batching, but batching in such a design is difficult. Assuming 128 threads
and a required IO depth of 256 requests to saturate an SSD, on average, only
2 simultaneous requests are required per thread per SSD. There is a difference
between SPDK and io_uring. SPDK only profits from batching per SSD, as it
reduces aforementioned MMIO calls (see Sect. 9.2.4). io_uring, on the other hand,
can handle multiple devices on a single ring instance, which does save system call
overhead, but internally also does not help with reducing MMIO calls. However, the
system call overhead when using eight SSDs makes batching practically irrelevant.

9.5 Conclusion

Software Can Exploit NVMe Hardware configurations that support tens of
millions of I/O operations per second are a reality. These hardware advancements
put I/O on the hot path, and the entire system stack must be properly designed to
utilize it. The software and the operating system abstraction layers, like page cache
and increasingly the file system, become the liming factor, as we have shown in
Sect. 9.2. With our storage engine LeanStore, we have shown that it is possible to
use the full potential of modern NVMe storage arrays. As a prerequisite to achieve
this, a highly efficient buffer manager is needed. We have seen that LeanStore has
almost no overhead in in-memory workloads. Optimizing the out-of-memory paths
as well has enabled us to saturate even a PCIe 5.0-based system with 23M IOPS.

Linux is Catching Up While the operating system I/O stack is often the bottleneck,
kernel developers are working on catching up and making NVMe performance more
widely accessible to system developers. For example, with the introduction of new
features like I/O passthru, the gap between kernel interfaces and user space drivers
is shrinking.

Novel I/O Abstractions The most efficient way of doing I/O is by removing all
abstractions and using user-space NVMe drivers like SPDK. However, this also
comes with well-known disadvantages. It is crucial to evaluate for every application
if this trade-off is justified, especially with the recent improvements in the kernel.
A possible solution is to use an I/O backend like xNVMe [37] that abstracts the
specifics of interfaces away and instead allows the usage of all of them.
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