
E�iciently Indexing Large Data on GPUs with Fast
Interconnects

Josef Schmeißer
j.m.schmeisser@gmail.com

Una�liated
Germany

Clemens Lutz∗
clutz@nvidia.com

NVIDIA
Santa Clara, CA, USA

Volker Markl
volker.markl@tu-berlin.de

BIFOLD, DFKI GmbH, TU Berlin
Berlin, Germany

ABSTRACT
Modern GPUs have long been capable of processing queries at a
high throughput. However, until recently, GPUs faced slow data
transfers from CPU main memory, and thus did not reach high
processing rates for large, out-of-core data. To cope, database
management systems (DBMSs) restrict their data access path
to bulk data transfers orchestrated by the CPU, i.e., table scans.
When queries expose selectivity, a full table scan wastes band-
width, leaving performance on the table. With the arrival of fast
interconnects, this design choice must be reconsidered. GPUs
can directly access data at up to 7× higher bandwidth, whereby
bytes are loaded on-demand.

We investigate four classic and recent index structures (binary
search, B+tree, Harmonia, and RadixSpline), which we access
via a fast interconnect. We show that indexing data can reduce
transfer volume. However, when embedded into an index-nested
loop join, we �nd that all indexes fail to outperform a hash join
in the most interesting case: a highly selective query on large
data (over 100 GiB). Therefore, we proposewindowed partitioning,
an index lookup optimization that generalizes to any index. As
a result, index-nested loop joins run up to 3–10× faster than
a hash join. Overall, we show that out-of-core indexes are a
feasible design choice to exploit selectivity when using a fast
interconnect.

1 INTRODUCTION
High-throughput query processing is enticing for cloud data
warehouses, which handle exabytes of data every day [2, 5]. Pre-
vious work has shown that GPU-enabled DBMSs are able to
improve query execution speed [8, 14, 17, 18, 37, 48]. However,
high speedups have only been attainable for small data sets that
�t into the on-board GPU memory [44]. In contrast, large data
are stored out-of-core, e.g., in CPU memory [17]. Thus, data inher-
ently traverse an interconnect to the GPU, causing a data transfer
bottleneck [29].

Fast access to large out-of-core data can be achieved in two
ways:

Reducing the transfer volume. Large-scale analytical queries
are often highly selective. This is re�ected widely used bench-
marks [6, 39]. Recent DBMSs take advantage of selectivity through
secondary index structures to reduce storage accesses [42, 49].
Index structures such as B-trees [3, 4, 43, 50] and others [19, 24,
27, 28] have been investigated on GPUs to accelerate point and
range lookups. However, existing transfer optimizations focus on
table scans [7, 32, 38, 40, 45, 48]. In contrast to these techniques,
an index reduces the transfer volume by exploiting predicate
∗Work partially conducted at TU Berlin.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Improvement

0

50

100

0.01 0.10 1.00

Selectivity

Tr
an
sf
er

Vo
lu
m
e
[G

iB
] hash join INLJ

Figure 1: For selective predicates, a hash join transfers
more data than necessary across the interconnect. In con-
trast, index joins reduce the data transfer volume.

selectivity to skip entire rows. However, skipping rows results in
an irregular access pattern, which current PCI-e interconnects
cannot handle e�ciently [29]. This becomes even more challeng-
ing if indexes are stored in CPU memory. In that case, the index
traversal incurs transfers, albeit with a higher locality [41].

Increasing the transfer rate presents an orthogonal path
to higher query performance. Recent fast interconnects such as
NVLink [33, 34, 36] and In�nity Fabric [1] are emerging as a
new technology to transfer data between the CPU and GPU. As
this next hardware generation provides the GPU with high band-
width to CPU memory, GPUs are able to scan tables on a level
playing �eld with CPUs. However, this does not lead to a speedup
over CPUs in scan-intensive queries, as CPU memory bandwidth
becomes the limiting factor [29]. Although fast interconnects
improve random access bandwidth, �ned-grained accesses still
limit the performance, e.g., of out-of-core hash tables [30]. Thus,
fast interconnects only lay the groundwork for processing large
data volumes using GPUs.

In this paper, we investigate how GPUs can leverage index
structures to transfer less data than a table scan, as shown in Fig. 1.
Fast interconnects support data-dependent memory accesses, a
crucial feature for index lookups to CPUmemory. This enables us
to evaluate state-of-the-art GPU index structures using an index-
nested loop join (INLJ). We �nd that an INLJ does not outperform
a hash join, even when join selectivity is low. Thus, we propose
to (1) partition lookup keys to reduce search path divergence, and
(2) reestablish the tuple stream by partitioning inside of windows.
We show the generality of our approach by applying it to all of
our index structures.

Our main contributions are:

(1) We analyze the performance limitations of three state-of-
the-art GPU indexes and a binary search when scaling an
INLJ up to 120 GiB over a fast interconnect. To the best of
our knowledge, we are the �rst to apply GPU indexes to
out-of-core data.

Short Paper

Series ISSN: 2367-2005 661 10.48786/edbt.2025.53

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.53

Table 1: Overview of interconnect receive bandwidth.

GPU Interconnect Bandwidth

various PCI-e 4.0 32 GB/s
various PCI-e 5.0 64 GB/s
AMD MI250X In�nity Fabric 3 72 GB/s
NVIDIA V100 NVLink 2.0 75 GB/s
NVIDIA GH200 NVLink C2C 450 GB/s

(2) With detailed hardware performance counter measure-
ments, we show how partitioning the search keys im-
proves the index traversal path and thereby avoids GPU
TLB misses.

(3) We propose a partitioning window approach that retains
the performance of partitioned lookups, without material-
ization.

(4) Overall, we �nd that for selective joins, index structures
can scale the INLJ to large datasets with a high throughput.
Thus, INLJs achieve speedups of up to 3–10× over a hash
join.

The remainder of this work is structured as follows. In Sec-
tion 2, we provide a brief background on fast interconnects and
summarize related work on GPU index structures. We then ana-
lyze why indexes do not live up to expectations for out-of-core
lookups in Section 3. Subsequently, in Section 4, we experimen-
tally evaluate how partitioning mitigates those issues. In Sec-
tion 5, we contribute our partitioning window approach. Finally,
we discuss our insights in Section 6 and give our concludes in
Section 7.

2 BACKGROUND AND RELATEDWORK
We summarize the background on fast interconnects. Further, we
cover related work on index structures and partitioned joins.

2.1 Fast Interconnects
In this work, we assume that data are stored in CPU memory
due to their large size. To access these base relations, the DBMS
transfers them to the GPU across an interconnect. With fast
interconnects, GPUs receive data from the CPU at rates up to
450 GB/s, which we summarize in Table 1. On GH200 platforms
with large CPU memory, the receive rate by itself (i.e., no bidirec-
tional transfers) exceeds the CPU memory bandwidth [35]. Thus,
fast interconnects can eliminate the data transfer bottleneck.

The GPU is able to dereference pointers to CPUmemory. Point-
ers can lead to data-dependent memory accesses, e.g., while travers-
ing linked index structures such as B+trees. That means access
locations are determined by the data’s content [16], and the ac-
cess pattern is subject to the data order and distribution. To ful�ll
the memory request, the GPU does not transfer a memory page,
as with heterogeneous memory management via PCI-e [20]. In-
stead, the GPU fetches a cacheline across the interconnect [30].
Thus, DBMSs can take advantage of �ne-grained accesses to CPU
memory.

Prior research shows that DBMSs can enable new functionality
based on these new features [21, 29–31, 40].We build on a detailed
hardware analysis [30] to investigate index structures.

2.2 Index Structures
Recent works propose new learned index structures, and optimize
existing indexes for GPUs. We give a brief summary.

The RadixSpline [25] is a learned index on a sorted array. It
works by de�ning spline points in the data, which are captured
together with their location. An o�set array points to radix parti-
tions of the spline points, based on the most signi�cant bits of
the keys. A lookup �rst locates the two spline points closest to
the lookup key, and interpolates these to start a binary search in
the data. In contrast to prior work, we evaluate the RadixSpline
on the GPU.

GPU-optimized index structures are tuned for the high par-
allelism and SIMT architecture of GPUs [3, 4, 24, 27, 43, 47, 50],
and ray tracing cores [19]. We focus on Harmonia [47], a B+tree
with a high lookup throughput. Harmonia introduces several
optimizations, the main one being its cooperative sub-warp tree
traversal. A warp is the unit of execution on GPUs and consists
of 32 threads on NVIDIA GPUs [9]. Harmonia parallelizes key
comparisons with a warp, recognizing that lookup paths are
less likely to diverge near the root node. As some comparisons
are unnecessary, Harmonia divides the warp into sub-warps to
parallelize over lookup keys as well. In contrast to previous re-
search, we investigate lookups conducted by the GPU to large
base relations in CPU memory.

2.3 Join Input Partitioning
Partitioning data ahead of hash joins has been previously studied
on GPUs [10, 15, 30]. However, with some exceptions, partitioned
joins are detrimental to overall query performance [13]. On top,
partitioning both inputs consumes additional memory equal to
the input size. By comparison, hash joins and INLJs integrate well
into query execution because these joins pipeline the probe-side
input. I.e., the tuple stream is processed on-the-�y. Best-e�ort
partitioning [12] extends these semantics to tuple batches by
partitioning probe-side batches on-the-�y.

Our partitioning window approach fundamentally di�ers from
partitioned joins, as it does not materialize either input. Instead,
it partitions the probe-side input on-the-�y. In contrast to best-
e�ort partitioning, our approach is based on an INLJ and does
not partition the index. As the index is typically declared on the
larger join input, the reuse factor [12] would be low. Inspired
by windows in stream processing [11], we only modify the tuple
stream with the aim to optimize index traversals.

3 ANALYSIS OF OUT-OF-CORE INDEX
STRUCTURES

As a basis for our work, we analyze out-of-core index accesses
usingNVLink 2.0.We describe how theGPU performs out-of-core
index accesses in our index structure implementations. Then we
introduce our experiment setup, and proceed to experimentally
evaluate the indexes in an INLJ.

3.1 Out-of-Core Index Accesses
In this work, we cover four GPU index structures: a RadixSpline,
Harmonia, a standard B+tree, and a binary search. A common
drawback of these index structures is their tendency to perform
more memory accesses per lookup key than a hash join, i.e.,
$ (;>6(=)) vs. $ (1) expected accesses. On the surface, these ac-
cesses are data-dependent and we might assume they incur an ir-
regular pattern. We detail why indexes do not result in$ (;>6(=))
remote accesses in out-of-core scenarios.

662

R

S

CPU 0

GPU Memory

Materialized
Results

GPU 0

Index

IOMMU
IOTLB

MMU
TLB

Address Translation

Memory
Controller

CPU Memory

17
0
G
B/
s

N
VL

in
k
2.
0

75
G
B/
s

Bus/Interconnect

Core 0 Core N

Figure 2: Overview of our hardware setup and data do-
mains.

During a hash table lookup, the �rst access incurs a single
random access as de�ned by the hash function. For reasonably
large hash tables, this �rst access is almost always guaranteed to
generate a cache miss. However, hash table implementations try
to avoid further cache misses on hash con�icts and for multi-map
semantics. For example, a linear probing scheme only accesses
contiguous addresses. This pattern has a high data locality as
the next entry are located either in the same or an adjacent
cacheline. With bucket chaining the situation is quite similar.
Here, the entry contains a pointer to the �rst bucket, which incurs
another random access. However, buckets do not necessarily form
a linked-list of individual items. Instead, multiple items can be
gathered into blocks to increase data locality. However, hash
tables perform best when stored in GPU memory, precisely how
DBMSs utilize them in hash joins.

The picture is di�erent for index structures such as B+trees,
on which INLJs are based. After the �rst few key lookups, the
upper-most tree levels are assumed to be cached and do not
incur memory accesses. Within each tree node, a binary search
locates the lower bound index of a queried key. This potentially
leads to multiple accesses per node in the lower tree levels, as
large nodes span multiple cachelines. As binary search divides
the search space in each iteration, random accesses patterns can
occur not only when traversing nodes, but also within each node.
Using smaller nodes has also been suggested [22], but has the
disadvantage that fewer keys �t into each node. As a result, the
tree grows in height, in turn leading to more tree levels being
traversed. However, in GPU-optimized indexes such as Harmonia,
sub-warps traverse the index. Thereby traversals amortize some
cache misses over multiple keys, although the traversal paths
ultimately diverge.

Overall, caching and sub-warp traversals reduce the remote
memory accesses incurred by out-of-core index structures.

3.2 Experiment Setup
We give an overview of our experiment setup, shown in Fig. 2.
First, we introduce the experiment environment and methodol-
ogy. We describe the workloads and join selectivity. Finally, we
specify the data and a hash join baseline.

Environment.Our benchmark machine is equipped with two
IBM POWER9 CPUs at 3.8 GHz with 16 cores each and a total
of 256 GiB memory. The system is furthermore equipped with
2 NVIDIA Tesla V100-SMX2 GPUs of which we only use one
in our benchmarks. The machine is set up to use 1 GiB huge
pages. We found that using huge pages of this size improves
the repetition accuracy of our experiments compared to 2 MiB,
although performance is approximately equal.

Workload. Our workload is inspired by queries such as TPC-
H Q4 and Q12, which have a large input to a single join with a

0

2

4

6

0 25 50 75 100

' size [GiB]

Q
ue
rie

s[
1/
s]

hj; warpcore ij; B+-tree ij; binary search ij; Harmonia ij; RadixSpline

Figure 3: Query throughput on a single join with di�erent
index structures in an INLJ and a hash join as reference.

low join selectivity. We perform a query with an equality join,
implemented as an INLJ. Our INLJ is a text book implementation
that calls an index structure in the inner loop. We consider four
index structures, namely: a B+tree, Harmonia, a RadixSpline,
and a binary search. The B+tree is con�gured with 4 KiB nodes,
Harmonia with 32 keys per node. All index structures and base
relations are stored in CPU memory, and are directly accessed
over the interconnect. The query materializes its results into GPU
memory1.

Methodology.We report throughput as queries per second, as
this metric is oblivious of the join type. The throughput measures
the entire query run, which includes windowed partitioning
and result materialization. We assume that the larger relation is
indexed, hence probe with the smaller relation. To re�ect real-
world use, we assume the index already exists when the query is
run.

Join Selectivity ranges between 0.4–100%. The join result
size remains constant as (and the match rate are �xed. However,
selectivity decreases due to scaling the size of '.

Data. Our test dataset consists of two relations ' and (. '
contains unique, sorted keys. ' is sorted to accommodate the
binary search and RadixSpline, but not strictly necessary for the
B+tree and Harmonia. (represents foreign keys into ', and is
drawn from ' following a uniform random distribution. Each
relation contains a single 8 byte integer attribute to maximize
the tree height of indexes. Throughout this work we keep (

�xed at 226 tuples (512 MiB) while scaling the size of '. Unless
mentioned otherwise, ' ranges between 226–233.9 tuples (0.5–120
GiB). However, size limit of ' is reduced for the B+tree and
Harmonia due to memory capacity constraints.

Baseline. We add a hash join baseline for comparability with
existing GPU joins. We use the recent WarpCore library [23] for
its MultiValueHashTable [26]. In our runs, we con�gure it with
a 50% load factor and a block size of 512 keys. The hash table
is kept in GPU memory. We �ip the input relations to build on
the smaller relation and reduce the hash table size. To re�ect
real-world use, the query builds the hash table on-the-�y, which
we include in the throughput measurement.

3.3 Experiments
In the following, we demonstrate that fast interconnects form a
basis for out-of-core INLJs by measuring the query throughput

1Large results could be spilled to CPU memory.

663

0

30

60

90

0 25 50 75 100

' size [GiB]

TL
B
m
is
se
s[
n]

ij; B+-tree ij; binary search ij; Harmonia ij; RadixSpline

Figure 4: Index structure traversals incur address transla-
tion requests on the GPU.

of a INLJs. However, the INLJs incurs TLB misses that reduce
performance, which we record in a second graph.

3.3.1 �ery Throughput. We analyze the e�ect on query
throughput when scaling the indexed relation in Fig. 3. We focus
on the join to emphasize INLJ throughput over the interconnect.
The workload is de�ned as in Section 3.2.

Approach. The GPU implementation of INLJ dispatches a
thread for each tuple of the probe side relation. Our probe side
relation does not include any �lter predicates to avoid warp diver-
gence e�ects, i.e., all threads within a warp are always fully occu-
pied. However, the selective join introduces �lter divergence [18],
a special case of warp divergence, in the index lookup. In case of
Harmonia, threads are dynamically rescheduled into sub-warps,
whereby each sub-warp is responsible for the lookup of a single
tuple at once. The sub-warp progresses unto the next tuple, until
each tuple in the initial warp has been processed.

Observations. The INLJ does not outperform the hash join,
even at the low selectivities incurred by a large ' relation. Ideally,
we would expect the INLJ to exhibit a �at horizontal line, as the
selectivity decreases with growing '. The result is a constant
transfer volume. Instead, the INLJ experiences a sudden drop
in throughout when ' grows beyond 32 GiB. In contrast, hash
join throughput does not drop suddenly. Instead, the queries per
second of the hash join decreases smoothly with the growing
transfer volume per query incurred by the table scan. In summary,
the INLJ does not perform as expected.

3.3.2 TLB Misses. We analyze address translation requests to
determine why the INLJ experiences a performance drop. Our
GPU model has a translation look-aside bu�er (TLB) range of
32 GiB [30], which correlates with our observation. In Fig. 4,
we establish causality by measuring the number of translation
requests per lookup. The experiment setup is identical to Sec-
tion 3.3.1.

Approach. The TLB caches virtual to physical address map-
pings. Modern GPUs have multiple TLB levels, but we simplify
the discussion to the last-level TLB. When a TLB miss occurs, the
GPU issues an address translation request across the interconnect
to the CPU. The CPU’s I/O memory management unit sends the
translation back to the GPU. The POWER9 CPU exposes hard-
ware performance counters with which we measure the GPU’s
translation requests. We refer to Lutz et al. [30] for details.

Observations. For small relations, there are near zero trans-
lation requests. However, at the 32 GiB mark, the translation
request rate of all INLJs spikes upwards. At 111 GiB of data,

0

2

4

6

0 25 50 75 100

' size [GiB]

Q
ue
rie

s[
1/
s]

hj; warpcore ij; B+-tree ij; binary search ij; Harmonia ij; RadixSpline

Figure 5: Throughput when partitioning lookup keys.

binary search requests 105 translations per key. In contrast, Har-
monia experiences only 11.3 requests. As ful�lling translation
requests incurs a high latency on the order of 3 µs [30], we iden-
tify TLB misses to be the main cause of the INLJ throughput
drop.

4 PARTIALLY SORTED INDEX ACCESSES
Having identi�ed that GPU TLB misses cause a performance
degradation, we tackle the underplaying issue of randommemory
accesses. Our aim is to reduce TLB misses by partially sorting
the lookup keys before executing the INLJ.

We give an intuition of how index traversals cause TLB misses,
walk through a basic solution approach, and evaluate our �nd-
ings.

4.1 Understanding TLB Misses in Index
Structure Traversals

In our previous experiment, traversing the index results in TLB
thrashing. Take binary search as an example. Given a random
sequence of lookup keys searching uniformly distributed data,
each traversal likely takes ;>62 (#) steps. As threads processes
keys in parallel, memory accesses evict TLB entries loaded by
other threads in the shared TLB. By the time a thread is ready
to process the next key, its previous traversal path is no longer
cached in the TLB. In e�ect, nearly every memory access incurs
a TLB miss.

Reordering the lookup keys to achieve better data locality
can prevent TLB thrashing. In Harmonia, sorting keys improves
lookup throughput by facilitating coalesced memory accesses
and reducing warp divergence during the traversal [47]. The
authors �nd that fully sorting the keys is not necessary, because
the most signi�cant bits of a key decide the leaf node and thus the
traversal path. We determine that these e�ects are not signi�cant
for large data sets (Yan et al. [47] evaluate on 1.5 GiB of data).
However, Harmonia’s approach inspires a way to mitigate TLB
misses.

4.2 Improving Data Locality
In our approach, we reduce the number of TLB misses by parti-
tioning the lookup keys. Partitioning improves the spacial data
locality of lookups, as each partition contains keys located close
in memory. During processing, neighboring threads should tra-
verse the index for keys within the GPU TLB’s 32 GiB range.
Hence, we optimize the memory access pattern to hit the TLB,
thereby improving throughput.

664

0

25

50

75

100

0 25 50 75 100

' size [GiB]

TL
B
m
is
sr

ed
uc
tio

n
[%
]

ij; B+-tree ij; binary search ij; Harmonia ij; RadixSpline

Figure 6: Partitioning the keys in the query reduces address
translation requests per index lookup.

We have to consider two aspects in order to determine the
bits on which to partition. First, the bits which are relevant for
mapping keys to memory pages. Second, bits that de�ne the
index traversal path of the lookup. As the data set is smaller
than the processor’s address space, the most signi�cant bits of
keys are identical. Hence, these bits do not a�ect the output of
a comparator. Simultaneously, the least signi�cant bits fall into
the same memory page. Thus, we choose bits starting at the bit
splitting the root node, down to the bit above the page size.

4.3 Experiments
Similar to Section 3, we perform two experiments. We repeat the
INLJ throughput analysis, but include the partitioning operator as
part of the INLJ. Subsequently, we evaluate whether partitioning
leads to a reduction in TLB misses.

4.3.1 �ery throughput. In Fig. 5, we scale the size of ' to
investigate the query throughput of INLJs. Otherwise, the exper-
iment setup is identical to Section 3.3.1.

Approach. Di�erent to our previous experiment, the INLJ
operator partitions the lookup keys before executing the join. In
our implementation, we radix partition the lookup keys using the
linear allocator-based software write-combining algorithm [46],
due to its high performance in GPU memory. We set it to 2048
partitions, ignoring the 4 least signi�cant bits of the key. We do
not change the hash join baseline, as its table scan is not subject
to frequent TLB misses.

Observations. In contrast to the results in Fig. 3, the sudden
drop in performance is now remedied. The INLJ achieves a more
consistent throughput for all index structures, also in the range
beyond 32 GiB. However, even below that limit, query through-
put is higher. Unsurprisingly, the binary search and tree-based
indexes follow a subtle downwards trend due to their logarithmic
lookup complexity. At 111 GiB, the INLJs achieve 0.6, 0.7, 1, and
1.9 Q/s respectively for the B+tree, the binary search, Harmonia,
and the RadixSpline. This contrasts to 0.2 Q/s for the hash join.
In summary, partitioning speeds up the INLJ by up to 10× over
the hash join.

4.3.2 TLB Misses. To con�rm that the performance increase
results from less TLB misses, we compare the TLB behavior
of Section 3.3.2 and our partitioning approach. Our results are
depicted in Fig. 6.

Approach. Like before, we record the number of address
translation requests per key. In the plot, we show the percent-
age of translation requests that have been eliminated relative to
Section 3.3.2.

Observations. The improvement at the TLB range boundary
is nearly 100%. This indicates that almost no address requests
occur. A close inspection shows that binary search still experi-
ences about 0.1 translation requests per lookup. However, the
other indexes have almost zero requests per key. The tree-based
index structures see the improvement a data point before the
others, presumably due to their larger persistent state. Overall,
partitioning eliminates the INLJ throughput drop for large data
sets by reducing TLB misses.

5 PARTITIONINGWINDOW
The approach in Section 4 materializes the lookup keys, which is
undesirable as outlined in Section 2.3. As a solution, we contribute
our partitioning window approach.

5.1 Our Approach
We propose to restrict partitioning to a window in order to restore
the pipeline while maintaining a high TLB hit rate.

Our approach. We divide the stream on-the-�y into disjoint,
�xed-size batches, i.e., tumbling windows [11]. When a window
is “closed”, we partition the tuples contained in the window.
After that, the window is passed on to the INLJ, which computes
the join for the window’s contents and continues the stream. In
principle, any partitioning operator and INLJ variants can be used.
We suggest applying a radix partition, and the INLJ described in
Section 3.

Closing the window occurs either when the window reaches
its capacity, or no more tuples are available on the probe-side of
the join. Although this approach could be augmented with stream
processing semantics, we focus on batch processing and rely on
an outer loop, e.g., a scan operator, to end the input stream.

We apply two GPU optimizations: concurrent kernel execution
and window size tuning.

Concurrent kernel execution. The pipeline consists of mul-
tiple GPU kernels, which directly access CPU memory. However,
not all kernels transfer data. If kernels were to run consecutively,
the interconnect would be underutilized. Therefore, we achieve
transfer-compute overlap by permitting the GPU to execute two
CUDA streams simultaneously with concurrent kernel execution,
as described by Lutz et al. [30].

Window size tuning is important to avoid TLB misses. A
small window (i.e., a vector) takes advantage of hardware caches
to store tuples. Conversely, a large window (e.g., 100 MiB) amor-
tizes TLB misses over more tuples. Given that GPU TLB misses
cost an order-of-magnitudemore thanGPUmemory accesses [30],
one might lean towards a large window size. However, our fol-
lowing experiment suggests that small windows su�ce.

5.2 Experiments
We experimentally establish the e�ectiveness of our partitioned
window approach.

5.2.1 Window Size. In Fig. 7, we evaluate how the window
size a�ects query throughput. We reuse the setup outlined in
Section 3.2.

Approach. In this experiment, we keep relation (as-is with
226 tuples, but �x ' at 100 GiB. We vary the window size from
218 to 226 tuples (2–512 MiB), and record the query throughput
for each index structure.

Observations. The throughput of all index structures remains
within 2×, indicating that the GPU TLB does not cause a per-
formance drop. However, index structures react di�erently to

665

0.5

1.0

1.5

2.0

0e+00 2e+07 4e+07 6e+07

Window size [tuples]

Q
ue
rie

s[
1/
s]

ij; B+-tree ij; binary search ij; Harmonia ij; RadixSpline

Figure 7: Impact of the window size on query throughput.

0

5

10

15

0.0 0.5 1.0 1.5

Zipf exponent

Q
ue
rie

s[
1/
s]

hj; warpcore ij; B+-tree ij; binary search ij; Harmonia ij; RadixSpline

Figure 8: Query throughput of skewed lookup keys.

A100 - PCIe Gen4 V100 - NVLink 2.0

0 50 100 0 50 100

0.0

2.5

5.0

7.5

10.0

' size [GiB]

Q
ue
rie

s[
1/
s]

hj; warpcore ij; Harmonia ij; RadixSpline

Figure 9: Comparison of PCI-e 4.0 and NVLink 2.0.

window size scaling. In fact, small window sizes in range 4–52
MiB yield the highest throughput for the RadixSpline. Harmonia
also prefers small windows. In contrast, binary search and the
B+tree show only minor performance variation.

5.2.2 Skewed Lookup Keys. We present skew handling in
Fig. 8.

Approach. To determine the e�ect of skew, we Zipf-distribute
the lookup keys in the exponent range 0–1.75. The relation sizes
are the same as Section 5.2.1. We set the window size to 32 MiB.

Observations. Throughput increases with Zipf exponents
higher than 1.0. With exponent 1.0, we calculate a 69% chance
of hitting the L1 cache. Our approach is able to handle this high
skew. However, the hash join degrades to a long probe chain.
After 10 hours, we terminated the measurement run.

5.2.3 Hardware Comparison. In Fig. 9 we study our parti-
tioned windowing on a di�erent hardware setup. We show the
two fastest INLJ variants, RadixSpline and Harmonia.

Approach.We compare an NVIDIA A100 with PCI-e 4.0 to
our previous GPU setup. We set the window size to 32 MiB. The
relation sizes are as in Section 5.2.1.

Observations. The hash join achieves 1.7× higher throughput
on the A100, as it is a faster GPU. Therefore, the crossover point
of INLJ vs. hash join on the A100 is at 13.9 GiB (3.6%), compared
to 6.2 GiB (8.0%) on the V100. We presume that this is because
fast interconnects have higher random access throughput than
PCI-e [29], which makes them better-suited for index lookups.
However, we leave a detailed analysis of out-of-core indexing us-
ing PCI-e to future work. Nonetheless, in principle, our approach
is portable to other GPU and interconnect architectures.

In summary, our insight is that our partitioned window ap-
proach successfully achieves a high GPU TLB hit rate together
with pipelineability on reasonably small windows.

6 DISCUSSION
We summarize and discuss the �ndings of our investigation.

Fast interconnects enable indexing large data sets in
CPU memory. By using a fast interconnect, the GPU requests
CPU memory at a cacheline granularity. We exploit this feature
to index data up to 120 GiB, allowing the GPU to select an index
scan instead of a full table scan. In our experiments, the index
reduces the transfer volume by up to 12×.

Partitioning lookup keys reduces TLB misses. For large
data, we �nd that TLB misses incur a throughput drop up to
16.7×. Our new partitioning window approach counteracts this
hardware limitation. Simultaneously, our approach avoids mate-
rializing the lookup keys. As a result, throughput remains consis-
tently high when scaling the data volume. Our evaluation reveals
that our approach can be applied to multiple index types.

Index structures improve the throughput of selective
joins. In our experiments, we demonstrate that an out-of-core
INLJ can outperform a hash join below 8.0% selectivity.We recom-
mend choosing a RadixSpline, as it has 1.1–1.8× higher through-
put than the second-best index, Harmonia. However, Harmonia is
a good alternative if the index must support inserts and updates.

7 CONCLUSION
The transfer volume directly impacts the time taken to access
data from the GPU. In this paper, we have shown that index struc-
tures reduce the transfer volume incurred by selective joins on
the GPU. We have contributed a partitioned window approach
that increases the locality of lookup keys, and thereby e�ciently
performed index lookups across a fast interconnect. In our inves-
tigation, we have demonstrated promising results with speedups
up to 10×.

ACKNOWLEDGMENTS
We thank Daniel Jünger (NVIDIA) for his advice on WarpCore.

REFERENCES
[1] AMD 2021. AMD CDNA 2 architecture. AMD. Retrieved Oct 8,

2024 from https://www.amd.com/content/dam/amd/en/documents/instinct-
business-docs/white-papers/amd-cdna2-white-paper.pdf

[2] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish
Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael
McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak,
Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan,
Sriram Subramanian, and Doug Terry. 2022. Amazon Redshift Re-invented.
In SIGMOD ’22: International Conference on Management of Data, Philadel-
phia, PA, USA, June 12 - 17, 2022. ACM, 2205–2217. https://doi.org/10.1145/
3514221.3526045

666

[3] Muhammad A. Awad, Saman Ashkiani, Rob Johnson, Martin Farach-Colton,
and John D. Owens. 2019. Engineering a high-performance GPU B-Tree. In
SIGPLAN. ACM, 145–157. https://doi.org/10.1145/3293883.3295706

[4] Muhammad A. Awad, Serban D. Porumbescu, and John D. Owens. 2022. A
GPU Multiversion B-Tree. In PACT. ACM, 481–493. https://doi.org/10.1145/
3559009.3569681

[5] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong,
David Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan John-
son, Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon,
Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel,
Tom van Bussel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei
Zaharia. 2022. Photon: A Fast Query Engine for Lakehouse Systems. In
SIGMOD ’22: International Conference on Management of Data, Philadelphia,
PA, USA, June 12 - 17, 2022. ACM, 2326–2339. https://doi.org/10.1145/
3514221.3526054

[6] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H analyzed:
Hiddenmessages and lessons learned from an in�uential benchmark. In TPCTC
(Lecture Notes in Computer Science), Vol. 8391. Springer, 61–76. https://doi.org/
10.1007/978-3-319-04936-6_5

[7] Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust query pro-
cessing in co-processor-accelerated databases. In SIGMOD. ACM, 1891–1906.
https://doi.org/10.1145/2882903.2882936

[8] Jiashen Cao, Rathijit Sen, Matteo Interlandi, Joy Arulraj, and Hyesoon Kim.
2023. GPU Database Systems Characterization and Optimization. Proc. VLDB
Endow. 17, 3 (2023), 441–454. https://doi.org/10.14778/3632093.3632107

[9] Erik Lindholm and John Nickolls and Stuart F. Oberman and John Montrym.
2008. Nvidia Tesla: A uni�ed graphics and computing architecture. IEEE Micro
28, 2 (2008), 39–55. https://doi.org/10.1109/MM.2008.31

[10] Johns Paul and Bingsheng He and Shengliang Lu and Chiew Tong Lau. 2019.
Revisiting hash join on graphics processors: A decade later. In ICDEW. IEEE,
Washington, DC, USA, 294–299. https://doi.org/10.1109/ICDEW.2019.00008

[11] Juliane Verwiebe and Philipp M. Grulich and Jonas Traub and Volker Markl.
2023. Survey of window types for aggregation in stream processing systems.
VLDB J. 32, 5 (2023), 985–1011. https://doi.org/10.1007/S00778-022-00778-6

[12] Marcin Zukowski and Sándor Héman and Peter A. Boncz. 2006. Architecture-
conscious hashing. In DaMoN. ACM, 6–es. https://doi.org/10.1145/
1140402.1140410

[13] Maximilian Bandle and Jana Giceva and Thomas Neumann. 2021. To partition,
or not to partition, that is the join question in a real system. In SIGMOD. ACM,
168–180. https://doi.org/10.1145/3448016.3452831

[14] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anasta-
sia Ailamaki. 2019. HetExchange: Encapsulating heterogeneous CPU-GPU
parallelism in JIT compiled engines. Proc. VLDB Endow. 12, 5 (2019), 544–556.

[15] Sioulas, Panagiotis and Chrysogelos, Periklis and Karpathiotakis, Manos and
Appuswamy, Raja and Ailamaki, Anastasia. 2019. Hardware-conscious hash-
joins on GPUs. In ICDE. IEEE,Washington, DC, USA, 698–709. https://doi.org/
10.1109/ICDE.2019.00068

[16] Yinan Li and Ippokratis Pandis and René Müller and Vijayshankar Raman
and Guy M. Lohman. 2013. NUMA-aware algorithms: The case of data
shu�ing. In CIDR. www.cidrdb.org. http://cidrdb.org/cidr2013/Papers/
CIDR13_Paper121.pdf

[17] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined Query Processing in Coprocessor Environments. In SIGMOD
Conference. ACM, 1603–1618.

[18] Henning Funke and Jens Teubner. 2020. Data-Parallel Query Processing
on Non-Uniform Data. Proc. VLDB Endow. 13, 6 (2020), 884–897. https:
//doi.org/10.14778/3380750.3380758

[19] Justus Henneberg and Felix Schuhknecht. 2023. RTIndeX: Exploiting
Hardware-Accelerated GPU Raytracing for Database Indexing. Proc. VLDB
Endow. 16, 13 (2023), 4268–4281.

[20] John Hubbard, Gonzalo Brito, Chirayu Garg, Nikolay Sakharnykh, and
Fred Oh. 2023. Simplifying GPU application development with het-
erogeneous memory management. NVIDIA. Retrieved Oct 3,
2024 from https://developer.nvidia.com/blog/simplifying-gpu-application-
development-with-heterogeneous-memory-management

[21] Ivan Ilic, Ilin Tolovski, and Tilmann Rabl. 2023. RMG Sort: Radix-Partitioning-
Based Multi-GPU Sorting. In Datenbanksysteme für Business, Technologie und
Web (BTW 2023), 20. Fachtagung des GI-Fachbereichs „Datenbanken und In-
formationssysteme" (DBIS), 06.-10, März 2023, Dresden, Germany, Proceedings
(LNI), Birgitta König-Ries, Stefanie Scherzinger, Wolfgang Lehner, and Got-
tfried Vossen (Eds.), Vol. P-331. Gesellschaft für Informatik e.V., 305–328.
https://doi.org/10.18420/BTW2023-15

[22] Rize Jin and Tae-Sun Chung. 2010. Node Compression Techniques Based
on Cache-Sensitive B+-Tree. In 9th IEEE/ACIS ICIS 2010. 133–138. https:
//doi.org/10.1109/ICIS.2010.9

[23] Daniel Jünger, Robin Kobus, André Müller, Christian Hundt, Kai Xu, Weiguo
Liu, and Bertil Schmidt. 2020. WarpCore: A library for fast hash tables on
GPUs. In HiPC. IEEE, 11–20. https://doi.org/10.1109/HIPC50609.2020.00015

[24] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.
Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.
2010. FAST: Fast Architecture Sensitive Tree Search on Modern CPUs and
GPUs. In SIGMOD. ACM, 339–350. https://doi.org/10.1145/1807167.1807206

[25] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons
Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass

learned index. In aiDM@SIGMOD. ACM, 5:1–5:5.
[26] Robin Kobus, AndréMüller, Daniel Jünger, ChristianHundt, and Bertil Schmidt.

2021. MetaCache-GPU: Ultra-fast metagenomic classi�cation. In ICPP. ACM,
25:1–25:11. https://doi.org/10.1145/3472456.3472460

[27] Martin Koppehel, Tobias Groth, Sven Groppe, and Thilo Pionteck. 2021.
CuART - A CUDA-based, Scalable Radix-Tree Lookup and Update Engine. In
ICPP. ACM, 12:1–12:10. https://doi.org/10.1145/3472456.3472511

[28] Jiesong Liu, Feng Zhang, Lv Lu, Chang Qi, Xiaoguang Guo, Dong Deng,
Guoliang Li, Huanchen Zhang, Jidong Zhai, Hechen Zhang, Yuxing Chen,
Anqun Pan, and Xiaoyong Du. 2024. G-Learned Index: Enabling E�cient
Learned Index on GPU. IEEE Trans. Parallel Distributed Syst. 35, 6 (2024),
795–812. https://doi.org/10.1109/TPDS.2024.3381214

[29] Clemens Lutz, Sebastian Breß, Ste�en Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In SIGMOD Conference. ACM, 1633–1649.

[30] Clemens Lutz, Sebastian Breß, Ste�en Zeuch, Tilmann Rabl, and Volker Markl.
2022. Triton Join: E�ciently Scaling to a Large Join State on GPUs with Fast
Interconnects. In SIGMOD Conference. ACM, 1017–1032.

[31] Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, and Tilmann Rabl. 2022. Evalu-
ating Multi-GPU Sorting with Modern Interconnects. In SIGMOD ’22: Inter-
national Conference on Management of Data, Philadelphia, PA, USA, June 12 -
17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM,
1795–1809. https://doi.org/10.1145/3514221.3517842

[32] Hamish Nicholson, Periklis Chrysogelos, and Anastasia Ailamaki. 2022. HP-
Cache: Memory-E�cient OLAP Through Proportional Caching. In DaMoN.
ACM, 7:1–7:9. https://doi.org/10.1145/3533737.3535100

[33] NVIDIA 2017. NVIDIA Tesla V100 GPU architecture. NVIDIA. Retrieved Oct
8, 2024 from https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf WP-08608-001_v1.1.

[34] NVIDIA 2024. NVIDIA Blackwell architecture technical brief. NVIDIA.
Retrieved Oct 8, 2024 from https://nvdam.widen.net/s/q8f9llv72p/nvidia-
blackwell-architecture-technical-brief Version 1.1.

[35] NVIDIA 2024. NVIDIA GH200 Grace Hopper Superchip. NVIDIA. Retrieved
Oct 8, 2024 from https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-
superchip Version JUL24.

[36] NVIDIA 2024. NVIDIA GH200 Grace Hopper Superchip architecture. NVIDIA.
Retrieved Oct 8, 2024 from https://nvdam.widen.net/s/qjzrmfdn2j/nvidia-
grace-hopper-superchip-architecture-whitepaper-v1.0 Version 1.21.

[37] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. 2020. Improv-
ing Execution E�ciency of Just-in-time Compilation based Query Processing
on GPUs. Proc. VLDB Endow. 14, 2 (2020), 202–214. https://doi.org/10.14778/
3425879.3425890

[38] Holger Pirk, Stefan Manegold, and Martin L. Kersten. 2014. Waste not...
E�cient co-processing of relational data. In IEEE 30th International Conference
on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014,
Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, andGoce Trajcevski (Eds.).
IEEE Computer Society, 508–519. https://doi.org/10.1109/ICDE.2014.6816677

[39] Meikel Pöss, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why
you should run TPC-DS: A workload analysis. In PVLDB. ACM, 1138–1149.

[40] Aunn Raza, Periklis Chrysogelos, Panagiotis Sioulas, Vladimir Indjic, Angelos-
Christos G. Anadiotis, and Anastasia Ailamaki. 2020. GPU-Accelerated Data
Management Under the Test of Time. In CIDR. www.cidrdb.org. http://
cidrdb.org/cidr2020/papers/p18-raza-cidr20.pdf

[41] Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, and
Alfons Kemper. 2022. B2-Tree: Page-Based String Indexing in Concurrent
Environments. Datenbank-Spektrum 22, 1 (2022), 11–22.

[42] Tobias Schmidt, Dominik Durner, Viktor Leis, and Thomas Neumann. 2024.
Two birds with one stone: Designing a hybrid cloud storage engine for HTAP.
PVLDB 17, 11 (2024), 3290–3303. https://doi.org/10.14778/3681954.3682001

[43] Amirhesam Shahvarani andHans-Arno Jacobsen. 2016. AHybrid B+-tree as So-
lution for In-Memory Indexing on CPU-GPU Heterogeneous Computing Plat-
forms. In SIGMOD. ACM, 1523–1538. https://doi.org/10.1145/2882903.2882918

[44] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics.
In SIGMOD. ACM, 1617–1632. https://doi.org/10.1145/3318464.3380595

[45] Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. 2022.
Tile-based Lightweight Integer Compression in GPU. In SIGMOD. ACM,
1390–1403. https://doi.org/10.1145/3514221.3526132

[46] Elias Stehle and Hans-Arno Jacobsen. 2017. A memory bandwidth-e�cient
hybrid radix sort on GPUs. In SIGMOD. ACM, 417–432. https://doi.org/
10.1145/3035918.3064043

[47] Zhaofeng Yan, Yuzhe Lin, Lu Peng, and Weihua Zhang. 2019. Harmonia: a
high throughput B+tree for GPUs. In PPoPP. ACM, 133–144.

[48] Bobbi W. Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating data
placement and query execution in heterogeneous CPU-GPU DBMS. PVLDB
15, 11 (2022), 2491–2503. https://doi.org/10.14778/3551793.3551809

[49] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, and Chengliang Chai.
2019. AnalyticDB: Real-time OLAP database system at Alibaba Cloud. PVLDB
12, 12 (2019), 2059–2070. https://doi.org/10.14778/3352063.3352124

[50] Weihua Zhang, Zhaofeng Yan, Yuzhe Lin, Chuanlei Zhao, and Lu Peng.
2020. A High Throughput B+tree for SIMD Architectures. IEEE Trans.
Parallel Distributed Syst. 31, 3 (2020), 707–720. https://doi.org/10.1109/
TPDS.2019.2942918

667

