
Scalable Data Management using GPUs with Fast
Interconnects

A Brief Overview

Clemens Lutz1,2

Abstract:

Modern database management systems (DBMSs) are tasked with analyzing terabytes of data, employing
a rich set of relational and machine learning operators. To process data at large scales, research efforts
have strived to leverage the high computational throughput and memory bandwidth of specialized
co-processors such as graphics processing units (GPUs). However, scaling data management on GPUs
is challenging because (1) the on-board memory of GPUs has too little capacity for storing large data
volumes, while (2) the interconnect bandwidth is not sufficient for ad hoc transfers from main memory.
Thus, data management on GPUs is limited by a data transfer bottleneck. In practice, CPUs process
large-scale data faster than GPUs, reducing the utility of GPUs for DBMSs.

This paper provides an overview of the author’s dissertation [Lu22a]. In our dissertation, we investigate
how a new class of fast interconnects can address the data transfer bottleneck and scale GPU-enabled
data management. Fast interconnects link GPU co-processors to a CPU with high bandwidth and
cache-coherence. We apply our insights to process stateful and iterative algorithms out-of-core by the
examples of a hash join and k-means clustering. Overall, GPU-enabled DBMSs are able to overcome
the data transfer bottleneck by employing new out-of-core algorithms that take advantage of fast
interconnects.

Keywords: relational database, GPU-accelerated data processing, data transfer bottleneck, NVLink,
Compute Express Link (CXL), Infinity Fabric, Triton join, single-pass k-means, translation lookaside
buffer (TLB)

The paper is structured as follows. First, we contextualize the role of GPUs today in Sect. 1,
and outline how GPUs fit into DBMSs in Sect. 2. In Sect. 3, we then motivate the dissertation,
and summarize the research challenges addressed in the dissertation in Sect. 4. We define
what a fast interconnect is in Sect. 5. We summarize our findings in Sect. 6 and give a
research outlook in Sect. 7.

1 The State of GPU-Enabled Data Management

Large-scale data management has become a pillar of science and industry, enabling
new research fields, services, and business models [HTT09; La14]. Earth monitoring
1 TU Berlin, Berlin, Germany, clutz@nvidia.com, https://orcid.org/0000-0002-6193-4734
2 Work done at TU Berlin. The author is currently employed at NVIDIA, Santa Clara, CA.

mailto:clutz@nvidia.com
https://orcid.org/0000-0002-6193-4734
https://orcid.org/0000-0002-6193-4734

satellites [CV21] and genome sequencers [Di18] generate terabytes of data every day.
Online services such as Google Search [Go22] and Uber [FS21] are backed by petabytes of
data. Database management systems (DBMS) routinely ingest and manage these large data
volumes[Am16; Ar20; Da16; Gu15].

In order to continue scaling data management as the progression of Moore’s Law slows
down [BC11; Es11; Ho14; HP19], co-processors such as GPUs, FPGAs, and ASICs have
been gaining adoption in research [Ba18; IKS20; Lo19; RBM22; Wu14] and industry [Ca16;
Jo21; KS21; Le21; RM16; Sh21] over the past decade. The entry barrier to co-processors is
now low with instant availability from all major cloud vendors, including Alibaba Cloud,
Amazon EC2, Google Compute Engine, and Microsoft Azure. Despite the growing adoption
and availability, in 2019 commercial GPU-enabled DBMSs occupied only a tiny 4.5–5.5‰
slice [Ma20; Ma21; Zi20] in the $46 billion DBMS market [Ga19]. GPU-enabled DBMSs
are found mostly in the form of research prototypes [Br18; Ch19; Fu18; He13; Me16;
PHH16], start-ups [Bl21; Br22; FA19; He21; Ki22; Om21; Ra21; SQ22], and peripheral
products [JC19; Sh19]. Major DBMS vendors, such as Amazon, IBM, Microsoft, Oracle,
SAP, and Snowflake, currently do not integrate co-processors into the core of their DBMS
products. In contrast, there is wide-spread adoption in the deep learning [De17; Ng19] and
high performance computing domains. For instance, 42% of the Top500 supercomputers
support co-processors [To24].

2 The Design of GPU-Enabled Database Management Systems

Fig. 1: Design of a GPU-enabled DBMS.

The state-of-the-art GPU-enabled DBMS prototypes and products have similarities in how
they integrate GPUs and manage large data [BFT16; Ch19; Fu18; Le21; Me16; Ra20]. As a
basis for further discussion, we extract relevant features into a general design. We present
an overview in Figure 1. For an in-depth background, we refer the interested reader to the
recent survey conducted by Rosenfeld et al. [RBM22].

GPU Use Cases. In principle, various tasks performed by a DBMS can be offloaded to a GPU,
e. g., query execution [Go04], query optimization [HM12], transaction processing [BB22;
HY11], stream processing [Ko16], and data loading [KLM21]. However, OLAP and machine
learning queries are the most established use-cases for GPUs in DBMSs [RBM22; Re20].

OLAP and ML. Online analytical processing (OLAP) and machine learning queries are
formulated ad hoc by the user to explore a data set [BKY19; CD97]. They are complex, i. e.,
consisting of scans, joins, and aggregations in the case of OLAP, and additionally linear
algebra operators and iterative control flow in the case of machine learning. Although these
workloads are read-heavy, the queries work on the entire data set. As a human is in the loop,
response times should be short. Thus, the goal of GPU-enabled DBMSs is to achieve the
high data rates necessary to query large data volumes in a timely fashion.

DBMS Design. From a design perspective, GPU-enabled DBMSs are column-oriented,
in-memory DBMSs [Br14; He09; He13; YLZ13]. This DBMS design stores data in CPU
memory and is optimized for analytical query processing [BZN05; KN11]. Storing large
data sets in CPU memory is possible because modern servers have terabytes of memory
capacity (i. e., DRAM) [21c; 21d; St18], and non-volatile memory technologies such as
Intel Optane are capable of increasing the capacity by an order-of-magnitude [Ar19; Sh20].
Column-oriented in-memory DBMSs increase the data access performance relative to
row-oriented data layouts [Br14; He09].

Query Execution. Within the DBMS, GPUs extend the query execution engine [BFT16;
Ch19; Fu18; Le21; Me16; Ra20]. The DBMS gains a runtime with operators specialized for
GPU execution. During execution, the DBMS transfers the data from CPU memory to the
GPU ad hoc and executes the query [BFT16; Ch19; Fu18; Le21; Me16; Ra20]. The other
DBMS components required to execute a query, e. g., SQL parsing and query planning and
optimization, are retained on the CPU [Br14; CSA19; He13].

Single Data Pass. Different execution paradigms exist to construct query execution engines.
Some engines generate code just-in-time to emit operator pipelines [Br18; Ch19; Fu18; Pa20],
others vectorize [Me16] or tile [PHH16; SMY20] the execution, and operator-at-a-time
execution is yet another variant [Br14; He13; Le21]. The processing paradigm is immaterial
to our thesis, but we must consider that only operator pipelines and vectorized/tiled engines
are capable of processing queries in a single data pass [Fu18; SMY20], which avoids
transferring data items over the interconnect multiple times.

3 Motivation

From a design standpoint, modern GPU-enabled DBMSs are able to achieve a high
query execution performance. Furthermore, the performance of GPU hardware is rapidly
increasing with each GPU generation [Su20; Sv21]. However, in order to sustain their query
performance, GPU-enabled DBMSs require fast access to data.

Motivation 1: Data-intensive Query Processing. To out compete CPUs in performance
benchmarks, GPU experts often assume that their input data are stored in the on-board
GPU memory [Br18; FT20; He13; Pa20; PMS15; SMY20]. GPU memory provides high-
bandwidth access to the data, but has only a limited storage capacity and therefore cannot

hold large data volumes [20b; 21b]. In practice, GPU-enabled DBMSs scale to large data
volumes by storing data in CPU memory instead of in GPU memory [Br14; Ch19; Fu18;
Le21; Me16; PMK14; Ra20; YLZ13]. CPU memory has sufficient capacity to store large
data volumes [21a; 21c; 22; St21], as its capacity is two orders-of-magnitude greater than
GPU memory [21b; 21e]. However, moving data from CPU memory to the GPU reduces
query performance because the data are transferred over an interconnect. Consequently,
database research points out that a data transfer bottleneck is the main reason behind the
comparatively slow adoption of GPU-enabled DBMSs [BS10; Fu18; GH11; Me16; Ra20;
SMY20; YLZ13].

Motivation 2: Stateful Data Processing. During query processing, DBMSs require
additional memory to retain the intermediate state of the query [Br14; CSA19; Fu18].
Queries involving state, e. g., joins, are considered a strong point of GPU-enabled DBMSs, as
keeping the state in GPU memory results in high query performance [He08; KML15; NEK18;
Pa21; Ro19; RT17; Sa10; Si19; SJ17; To18; Ya17]. However, recent investigations reveal
that a large state size incurs memory contention [BFT16; Me16] and causes commercial
GPU-enabled DBMSs to fail query execution [Ch19; Ch20; FT20; Le21; Pa21]. Thus,
current GPU-enabled DBMSs are not optimized to handle large state. We consider fragility
in scaling the state size an obstacle for building production-ready DBMS products.

Motivation 3: Iterative Algorithms. In addition to relational queries, modern DBMSs [Bl22;
He12; KBY17; Kh18; Pa17; Sc20; Sc21; Zh21] and specialized systems [Bo16; Bo20;
Cr15; Ku19; Ro13; Sp17; Xi18] target machine learning queries. Machine learning queries
differ from relational queries in that they iterate over the same data, i. e., the working set,
multiple times [BKY19]. Although GPU are able to quickly compute machine learning
queries, GPU execution strategies for, e. g., k-means, typically assume that the working set
fits into GPU memory [An13; As15; JDJ21; KK20]. In effect, systems scale-out to multiple
GPUs to manage large data sets, which increases the cost of processing queries.

Overall, GPU co-processing does not scale to large data volumes. Currently, GPUs are
only able to speed-up short queries over small data sets, which have a small scope for
improvement. Hence, an opportunity is lost for state-of-the-art DBMSs to achieve faster
response times on those long-running, large-scale queries where performance matters.

4 Research Challenges Addressed

In their dissertation [Lu22a], the author investigates the scalability limitations of GPU
co-processing and analyze how a faster interconnect helps us to overcome them. A new class
of fast interconnects provide GPUs with high-bandwidth, cache-coherent access to main
memory. Recent examples include NVLink 2.0 [17a] and C2C [Nv24a; Nv24b], Infinity
Fabric [19a], and Compute Express Link 2.0 [20a]. Efficiently utilizing a fast interconnect
in a GPU-enabled DBMS requires us to reevaluate fundamental design decisions in order to
adapt to the new hardware properties.

Our dissertation consists of three main contributions that address the challenges stated
below. Based on our insights, we have continued our research by following up on the
dissertation. We summarize:

Challenge 1: Scalable Data-intensive Query Processing. Our first contribution focuses
on the interconnect hardware [Lu20]. Specifically, we examine the principle limitations of
GPU interconnects in the context of databases. We introduce fast interconnects, and show
by the example of NVLink 2.0 that a fast interconnect improves the basic bandwidth and
latency characteristics beyond PCI-e 3.0. Due to these improvements, we conclude that
GPUs are now capable of efficiently processing large, out-of-core data sets. However, our
measurements show that fast interconnects also lead to new challenges, such as handling
operators with a large state efficiently.

Challenge 2: Scalable and Robust Stateful Data Processing. Guided by our findings, we
propose the Triton join [Lu22b], a new join algorithm that efficiently handles large-scale
joins for which the join state exceeds the GPU memory capacity. Although fast interconnects
provide faster random-access bandwidth than PCI-e, the join throughput experiences a
sharp performance drop when the join state exceeds the GPU memory capacity. Thus, large
joins face the challenges of limited scalability and robustness. Previous approaches avoid
the transfer bottleneck by preprocessing data on the CPU and thereby reducing the transfer
volume. In contrast, we show that fast interconnects enable GPUs to efficiently partition
data out-of-core, and are thus able to scale to a large join state using exclusively the GPU.
With our Triton join, the principle limitation posed by the GPU memory capacity is solvable
with a throughput of more than 50% vs. a join with a small state.

Challenge 3: Scalable Iterative Algorithms. In our final contribution [Lu18a; Lu18b], we
demonstrate that iterative machine learning algorithms are able to process large data sets
by examining k-means and proposing a scalable GPU execution strategy. State-of-the-art
execution strategies accelerate k-means by extracting the compute-intensive parts and
offloading these computations to the GPU. However, as execution is split into a CPU
phase and a GPU phase, this execution strategy incurs data transfer overhead and misses
optimization opportunities. On each iteration, the CPU and the GPU transfer the model
over the interconnect, and separately pass over the data. These overheads exacerbate as the
algorithm requires tens of iterations to converge [El03]. As a result, the state-of-the-art
strategy executes slower than a CPU-only baseline. In contrast, we avoid the model transfer
overhead by proposing a new centroid update algorithm optimized for GPUs. In a second
optimization step, this enables us to fuse all phases of k-means into a single data pass per
iteration. Thus, our new GPU-only execution strategy efficiently scales k-means to large
data volumes.

Follow-Up Work. Enabled by fast interconnects, new use cases for the GPU emerge. For
example, data loading involves streaming data from an I/O device such as network interface
or disk to the GPU, and parsing the data format. We demonstrate that the DBMS can

offload parsing of complex formats such as CSV to the GPU [KLM21]. In a similar vein,
high-bandwidth network interfaces are pressuring stream processing engines to become
more efficient [Ze19]. Due to algorithmic advances, compute-intensive stream joins are
approaching the limit of PCI-e when processed on GPU [Mi21; Nu24]. Fast interconnects
open the door to further improvements.

5 Fast Interconnects: A Definition

Up until this point, we have given an intuitive understanding of what the term fast interconnect
means through examples. To cover the changing hardware landscape, we formalize the term
by providing a definition. We base our definition on a set of hardware properties, and reason
why these properties facilitate efficient data management. For the interested reader, our
dissertation contains a deep-dive on GPU and interconnect hardware technology.

Fig. 2: The distinguishing properties of fast interconnects.

Definition. We define a “fast interconnect” to have two distinguishing properties which we
illustrate in Figure 2: the aggregate bidirectional interconnect bandwidth approximately
matches the per-socket CPU memory bandwidth and the interconnect is cache-coherent.
In our definition, cache-coherence means that the hardware natively supports a system-wide
address space, data-dependent accesses to pageable memory, and system-wide atomic
memory operations.

Rationale. We justify why our definition requires high bandwidth and the four cache-
coherence sub-properties. One, sufficiently high interconnect bandwidth is necessary to
level the playing field between the GPU and the CPU. Without high bandwidth, the GPU
cannot efficiently access CPU memory (and vice-versa). Two, cache-coherence (excluding
the subsumed properties) is necessary because CPUs transparently cache data. Without
cache-coherence, programmers must manage caches manually to avoid accessing stale data.
Three, without a system-wide address space, programmers must manually translate pointers
in order to move them from one processor’s address space to the next. Four, without pageable
memory access, memory accessed from a different processor must be pinned beforehand.
Five, without atomic memory operations, processors cannot share and mutate data at a fine
granularity. Overall, these properties work together to make memory accesses and memory
management faster and more convenient.

Practical Limitations. Processors are free to take advantage of only a subset of the
interconnect’s features. For example, IBM POWER9 CPUs do not achieve the peak
bandwidth of NVLink 2.0 [IB18], and the L1 caches of current GPUs do not implement
cache-coherence in hardware [CGF18; Mi17]. Consequently, the programmer must deal
with these shortcomings, e. g., by managing the consistency of cached data in software.
However, in this case, the hardware continues to provide memory consistency [Nv24b],
which is complementary to cache-coherence [HP17]. Ideally, the interconnect supports all
features to avoid restricting processors to the intersection of their feature sets.

Conclusion. In our fast interconnect definition, we specify properties that complement each
other and form a basis on which DBMSs can tightly integrate co-processors. Thus, a fast
interconnect provides DBMSs with the means to resolve the data transfer bottleneck from a
hardware perspective.

6 Scaling the Data Volume with a Fast Interconnect

158.9

102.6
124.6 120.1

24.7 21.1
0

50

100

150

200

Theoretical Measured

Ba
nd

w
id
th

(G
iB
/s
)

Memory NVLink 2.0 PCI-e 3.0

Fig. 3: NVLink 2.0 eliminates the GPU’s main-memory access disadvantage compared to the CPU.

From a software perspective, however, DBMSs need to take advantage of the fast interconnect.
We summarize the key findings of the dissertation.

Scalable Data Management using GPUs. We observe that GPUs can load data from CPU
memory with bandwidth similar to the CPU, as shown in Fig. 3. Thus, offloading data
processing on GPUs becomes viable even when the data is stored in CPU memory.

As a consequence of higher interconnect bandwidth, transfers are no longer the main
bottleneck. In some cases, the high interconnect bandwidth shifts the bottleneck to other
resources, such as random access bandwidth, TLB misses, and computation. For example,
we have shown speedups of up to 6× over PCI-e 3.0 for hash joins operating on a data
structure in GPU memory. In this case, performance is limited by random access bandwidth
to GPU memory.

Due to the unified address space and lower latency, GPUs are able to operate on out-of-core
data structures. In our evaluation, we showed up to 20× higher hash join throughput with
NVLink 2.0 than with PCI-e 3.0. However, we recommend that GPUs should continue
to operate in GPU memory if possible. Despite attaining speedups over PCI-e, operating
within GPU memory is still 6.5× faster compared to transferring data over NVLink 2.0.

Small (8 GiB) Large (32 GiB)

CPU GPU CPU GPU Goal

Th
ro
ug

hp
ut

Join Performance
Fig. 4: Scaling to large data volumes needs an interconnect-conscious design.

A fast interconnect is necessary, but not sufficient. In Fig. 4, we showcase the principle. In
the case of a small hash table, the interconnect hardware itself allows the GPU to outperform
the CPU. However, when observing a large hash table, the GPU not only looses its advantage
but experiences a slowdown. In contrast, the goal of our work is to consistently achieve a
speedup.

For example, spilling data structures to CPU memory should be done with extreme caution.
In the best case, a non-optimized hash join experiences irregular access patterns for a 2×
slowdown compared to an optimized CPU radix join. In the worst case, the GPU hash join
suffers from GPU TLB misses, which cause a further 400× slowdown compared to the TLB
hit case.

However, a better algorithm can exploit that fast interconnects provide sufficient bandwidth
to spill large state to CPU memory. e. g., with our Triton join, a 2× speedup over a strong
CPU baseline is possible even when the state size exceeds the GPU memory capacity.

Interconnect-Conscious Design. As the bottleneck shifts, optimization becomes chal-
lenging. Multiple constraints can simultaneously affect different parts of the program.
Simultaneously, the hardware properties of fast interconnects open the design space to
create new algorithms.

We advocate an interconnect-conscious DBMS and algorithm design:

1. Regarding data access, DBMSs can take advantage of cache-coherence to directly
access and mutate data anywhere in memory, potentially simplifying software design.

2. Regarding state access, awareness of the interconnect architecture can lead to higher
performance. In case of the Triton join, the knowledge that interconnects are packet-
oriented lead to perfect coalescing (i. e., tailoring the access pattern to fill each the
packet with the maximum payload size).

3. Regarding data locality, end-to-end GPU execution eliminates overheads incurred by
co-processing. This paradigm also enables exploiting the GPU’s memory hierarchy
to optimize execution.

Conclusion. Fast interconnects enable GPUs to cover a broader spectrum of database
use-cases, but we require new algorithms to fully exploit the performance potential of fast
interconnects. We have demonstrated efficient out-of-core data access, state access, and
iterative algorithms.

7 Research Outlook

Our dissertation lays the foundation for research on scalable data management using GPUs
with fast interconnects. At the time when the research for the dissertation was conducted, it
was not clear whether fast interconnects would outlive a single hardware platform. As of
this writing, we are headed towards the third GPU generation with a fast interconnect [17a;
Nv24a; Nv24b], and major cloud service providers announcing availability [He24; Th24;
Ve24]. This continued hardware evolution provides a perspective for further DBMS research.

In the following, we discuss five open research challenges.

DBMS Design. In our research, we have focused on joins and k-means to show that principle
limitations of data management on GPUs can be solved using fast interconnects. Future
work could broaden our findings to other relational operators such as selections, group-by
aggregations, and set operators. We are currently investigating interconnect-conscious index
structures to scale, e. g., highly selective queries, range queries, outer joins, and inequality
joins. By lowering the penalty of data transfers, operator placement on heterogeneous
processors could be reinvestigated. Our heterogeneous, morsel-driven work scheduling
approach could be extended to operator pipelines, whereby the GPU could itself schedule
work using native atomics. The trade-offs inherent to data compression should be reevaluated
for fast interconnects and hardware-accelerated compression [Ab20; Nv24a; Rh18]. These
innovations should be combined to improve the overall query performance of a DBMS.

Data Streaming. Fast interconnects are particularly interesting for data stream management
due to the inherent network I/O. Modern network interface cards can achieve a bandwidth
comparable to that of CPU memory, and thus require new approaches to ingest and process
data [KLM21; Ze19]. However, individual streams are unlikely to reach these speeds. Taking
advantage of the hardware would involve either complex streaming queries with many
joins or scaling the number of queries. High data velocities could result in large windows
that require spilling a large state to CPU memory via the interconnect. Furthermore, fast

interconnects can also integrate network interface cards into the system, which provides
new research opportunities [RRW18].

Deep Learning. Neural network models such as BERT [De19] and GPT-3 [Br20] are
affected by the data transfer bottleneck due to their large size. In effect, parameter servers
must scale to a large model size with fast response times to parameter queries. An out-of-core
parameter server could scale the model size by applying our hardware insights.

Data Loading. We notice that the data load time is typically not measured in research
publications. However, benchmarks such as TPC-H reflect that real-world workloads often
bulk load data before executing queries [17b, §4.3]. Loading converts the data format from,
e. g., CSV, to a DBMS-specific format. We have shown promising results by leveraging
GPUs to reduce the data load time [KLM21]. Future work could revisit our approach to load
multiple data streams in parallel, create indices during loading, and validate the input format
to guard against errors. Ultimately, this line of research would result in fast end-to-end query
performance.

Storage Volume. Non-volatile memory and flash disks could be investigated to scale the
data volume beyond CPU memory. Fast interconnects provide GPUs access to these storage
technologies, which present additional challenges due to their read and write characteristics.
In contrast, disaggregated memory scales to petabytes of space as well, but might involve
complex data access paths [19b; St21].

Fast Interconnect Technologies. In our dissertation, we have evaluated NVLink 2.0 on
account of its commercial availability. However, fast interconnects from multiple hardware
vendors are becoming available (e. g., CXL). Future work could evaluate and compare the
upcoming fast interconnect technologies.

In conclusion, we expect that continued research will evolve GPU-enabled DBMSs towards
fast interconnects, and thereby expand the scope of GPUs in data management.

References
[17a] Nvidia Tesla V100 GPU architecture, WP-08608-001_v1.1, Nvidia, 2017, https://images.

nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
[17b] Transaction Processing Performance Council. TPC-H. 2017, http://www.tpc.org/tpch.
[19a] AMD EPYC CPUs, AMD Radeon Instinct GPUs and ROCm open source software to

power world’s fastest supercomputer at Oak Ridge National Laboratory, AMD, 2019,
https://www.amd.com/en/press-releases/2019-05-07-amd-epyc-cpus-radeon-instinct-
gpus-and-rocm-open-source-software-to-power.

[19b] Compute Express Link specification, Revision 1.1, CXL, 2019, https : / / www .
computeexpresslink.org.

[20a] Compute Express Link specification, Revision 2.0, CXL, 2020, https : / / www .
computeexpresslink.org.

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://www.tpc.org/tpch
https://www.amd.com/en/press-releases/2019-05-07-amd-epyc-cpus-radeon-instinct-gpus-and-rocm-open-source-software-to-power
https://www.amd.com/en/press-releases/2019-05-07-amd-epyc-cpus-radeon-instinct-gpus-and-rocm-open-source-software-to-power
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://www.computeexpresslink.org

[20b] Nvidia A100 tensore core GPU architecture, Version 1.0, Nvidia, 2020, https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-
whitepaper.pdf.

[21a] 3rd gen Intel Xeon Scalable processors product brief, Intel, 2021, https://www.intel.com/
content/dam/www/public/us/en/documents/a1171486-icelake-productbrief-updates-
r1v2.pdf.

[21b] AMD CDNA 2 architecture, AMD, 2021, https://www.amd.com/system/files/documents/
amd-cdna2-white-paper.pdf.

[21c] AMD EPYC 7003 series processors, Revision LE-77202-00 02/21, AMD, 2021, https:
//www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf.

[21d] Intel Xeon Gold 6338 processor, Intel, 2021, https://ark.intel.com/content/www/us/en/
ark/products/212285/intel-xeon-gold-6338-processor-48m-cache-2-00-ghz.html.

[21e] Nvidia A100 tensore core GPU, Nvidia, 2021, https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950- r4-
web.pdf.

[22] Ampere Altra Max datasheet, Document issue 0.91, Ampere Computing, 2022, https:
//amperecomputing.com/wp-content/uploads/2022/01/Altra_Max_Rev_A1_DS_v0.
91_20220113.pdf.

[Ab20] Abali, B. et al.: Data compression accelerator on IBM POWER9 and z15 processors. In:
ISCA. IEEE, Washington, DC, USA, pp. 1–14, 2020.

[Am16] Amazon AWS: AWS Snowmobile — Migrate or transport exabyte-scale data sets into
and out of AWS, 2016, https://aws.amazon.com/snowmobile.

[An13] Andrade, G. et al.: G-DBSCAN: A GPU accelerated algorithm for density-based clustering.
Procedia Computer Science 18, pp. 369–378, 2013.

[Ar19] Arafa, M. et al.: Cascade Lake: Next generation Intel Xeon Scalable processor. IEEE
Micro 39 (2), pp. 29–36, 2019.

[Ar20] Armbrust, M. et al.: Delta Lake: High-performance ACID table storage over cloud object
stores. PVLDB 13 (12), pp. 3411–3424, 2020.

[As15] Ashari, A. et al.: On optimizing machine learning workloads via kernel fusion. In: PPoPP.
ACM, New York, NY, USA, pp. 173–182, 2015.

[Ba18] Balkesen, C. et al.: RAPID: In-memory analytical query processing engine with extreme
performance per watt. In: SIGMOD. ACM, New York, NY, USA, pp. 1407–1419, 2018.

[BB22] Boeschen, N.; Binnig, C.: GaccO — A GPU-accelerated OLTP DBMS. In: SIGMOD.
ACM, New York, NY, USA, pp. 1003–1016, 2022.

[BC11] Borkar, S.; Chien, A. A.: The future of microprocessors. Commun. ACM 54 (5), pp. 67–77,
2011.

[BFT16] Breß, S.; Funke, H.; Teubner, J.: Robust query processing in co-processor-accelerated
databases. In: SIGMOD. ACM, New York, NY, USA, pp. 1891–1906, 2016.

[BKY19] Boehm, M.; Kumar, A.; Yang, J.: Data management in machine learning systems. Morgan
& Claypool Publishers, San Rafael, CA, USA, 2019.

[Bl21] BlazingSQL: BlazingSQL, 2021, https://blazingsql.com.
[Bl22] Blacher, M. et al.: Machine learning, linear algebra, and more: Is SQL all you need? In:

CIDR. www.cidrdb.org, pp. 1–6, 2022, https://www.cidrdb.org/cidr2022/papers/p17-
blacher.pdf.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/a1171486-icelake-productbrief-updates-r1v2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/a1171486-icelake-productbrief-updates-r1v2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/a1171486-icelake-productbrief-updates-r1v2.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://ark.intel.com/content/www/us/en/ark/products/212285/intel-xeon-gold-6338-processor-48m-cache-2-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212285/intel-xeon-gold-6338-processor-48m-cache-2-00-ghz.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://amperecomputing.com/wp-content/uploads/2022/01/Altra_Max_Rev_A1_DS_v0.91_20220113.pdf
https://amperecomputing.com/wp-content/uploads/2022/01/Altra_Max_Rev_A1_DS_v0.91_20220113.pdf
https://amperecomputing.com/wp-content/uploads/2022/01/Altra_Max_Rev_A1_DS_v0.91_20220113.pdf
https://aws.amazon.com/snowmobile
https://blazingsql.com
https://www.cidrdb.org/cidr2022/papers/p17-blacher.pdf
https://www.cidrdb.org/cidr2022/papers/p17-blacher.pdf

[Bo16] Boehm, M. et al.: Declarative machine learning — A classification of basic properties
and types, 2016, arXiv: 1605.05826 [cs.DB].

[Bo20] Boehm, M. et al.: SystemDS: A declarative machine learning system for the end-to-end
data science lifecycle. In: CIDR. www.cidrdb.org, pp. 1–8, 2020, http://cidrdb.org/
cidr2020/papers/p22-boehm-cidr20.pdf.

[Br14] Breß, S.: The design and implementation of CoGaDB: A column-oriented GPU-
accelerated DBMS. Datenbank-Spektrum 14 (3), pp. 199–209, 2014.

[Br18] Breß, S. et al.: Generating custom code for efficient query execution on heterogeneous
processors. VLDB J. 27 (6), pp. 797–822, 2018.

[Br20] Brown, T. et al.: Language models are few-shot learners. In: NeurIPS. Vol. 33, Curran
Associates, Inc., Red Hook, NY, USA, pp. 1877–1901, 2020, https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[Br22] Brytlyt: BrytlytDB, 2022, https://www.brytlyt.com/what-we-do/brytlytdb.
[BS10] Bakkum, P.; Skadron, K.: Accelerating SQL database operations on a GPU with CUDA.

In: GPGPU. Vol. 425, ACM, New York, NY, USA, pp. 94–103, 2010.
[BZN05] Boncz, P. A.; Zukowski, M.; Nes, N.: MonetDB/X100: Hyper-pipelining query execution.

In: CIDR. www.cidrdb.org, pp. 225–237, 2005, http://cidrdb.org/cidr2005/papers/P19.
pdf.

[Ca16] Caulfield, A. M. et al.: A cloud-scale acceleration architecture. In: MICRO. IEEE
Computer Society, 7:1–7:13, 2016.

[CD97] Chaudhuri, S.; Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26 (1), pp. 65–74, 1997.

[CGF18] Choquette, J.; Giroux, O.; Foley, D.: Volta: Performance and programmability. IEEE
Micro 38 (2), pp. 42–52, 2018.

[Ch19] Chrysogelos, P. et al.: HetExchange: Encapsulating heterogeneous CPU–GPU parallelism
in JIT compiled engines. PVLDB 12 (5), pp. 544–556, 2019.

[Ch20] Chu, H. et al.: Empirical evaluation across multiple GPU-accelerated DBMSes. In:
DaMoN. ACM, New York, NY, USA, 16:1–16:3, 2020.

[Cr15] Crotty, A. et al.: An architecture for compiling UDF-centric workflows. PVLDB 8 (12),
pp. 1466–1477, 2015.

[CSA19] Chrysogelos, P.; Sioulas, P.; Ailamaki, A.: Hardware-conscious query processing in
GPU-accelerated analytical engines. In: CIDR. www.cidrdb.org, pp. 1–9, 2019, http:
//cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf.

[CV21] Castriotta, A. G.; Volpi, F.: Copernicus Sentinel data access annual report Y2020, 2021,
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2020/COPE-
SERCO-RP-21-1141_-_Sentinel_Data_Access_Annual_Report_Y2020_final_v2.3.
pdf.

[Da16] Dageville, B. et al.: The Snowflake elastic data warehouse. In: SIGMOD. ACM, New
York, NY, USA, pp. 215–226, 2016.

[De17] Deloitte: Hitting the accelerator: the next generation of machine-learning chips, 2017,
https : / / www2 . deloitte . com / content / dam / Deloitte / global / Images / infographics /
technologymediatelecommunications / gx - deloitte - tmt - 2018 - nextgen - machine -
learning-report.pdf.

https://arxiv.org/abs/1605.05826
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.brytlyt.com/what-we-do/brytlytdb
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2020/COPE-SERCO-RP-21-1141_-_Sentinel_Data_Access_Annual_Report_Y2020_final_v2.3.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2020/COPE-SERCO-RP-21-1141_-_Sentinel_Data_Access_Annual_Report_Y2020_final_v2.3.pdf
https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2020/COPE-SERCO-RP-21-1141_-_Sentinel_Data_Access_Annual_Report_Y2020_final_v2.3.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Images/infographics/technologymediatelecommunications/gx-deloitte-tmt-2018-nextgen-machine-learning-report.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Images/infographics/technologymediatelecommunications/gx-deloitte-tmt-2018-nextgen-machine-learning-report.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Images/infographics/technologymediatelecommunications/gx-deloitte-tmt-2018-nextgen-machine-learning-report.pdf

[De19] Devlin, J. et al.: BERT: Pre-training of deep bidirectional transformers for language
understanding. In: NAACL-HLT. Association for Computational Linguistics, Stroudsburg,
PA, USA, pp. 4171–4186, 2019.

[Di18] van Dijk, E. L. et al.: The third revolution in sequencing technology. Trends in Genetics
34 (9), pp. 666–681, 2018.

[El03] Elkan, C.: Using the triangle inequality to accelerate k-means. In: ICML. AAAI Press,
Menlo Park, CA, USA, pp. 147–153, 2003, https://www.aaai.org/Papers/ICML/2003/
ICML03-022.pdf.

[Es11] Esmaeilzadeh, H. et al.: Dark silicon and the end of multicore scaling. In: ISCA. Pp. 365–
376, 2011.

[FA19] FASTDATA.io: PlasmaENGINE, 2019, https://fastdata.io/plasma-engine.
[FS21] Fu, Y.; Soman, C.: Real-time data infrastructure at Uber. In: SIGMOD. ACM, New York,

NY, USA, pp. 2503–2516, 2021.
[FT20] Funke, H.; Teubner, J.: Data-parallel query processing on non-uniform data. PVLDB

13 (6), pp. 884–897, 2020.
[Fu18] Funke, H. et al.: Pipelined query processing in coprocessor environments. In: SIGMOD.

ACM, New York, NY, USA, pp. 1603–1618, 2018.
[Ga19] Gartner: Gartner Says the Future of the Database Market Is the Cloud, 2019, https:

//www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-
of-the-database-market-is-the.

[GH11] Gregg, C.; Hazelwood, K. M.: Where is the data? Why you cannot debate CPU vs. GPU
performance without the answer. In: ISPASS. IEEE Computer Society, Los Alamitos,
CA, USA, pp. 134–144, 2011.

[Go04] Govindaraju, N. K. et al.: Fast computation of database operations using graphics
processors. In: SIGMOD. ACM, New York, NY, USA, pp. 215–226, 2004.

[Go22] Google: How Google Search organizes information, 2022, https://www.google.com/intl/
en/search/howsearchworks/how-search-works/organizing-information.

[Gu15] Gupta, A. et al.: Amazon Redshift and the case for simpler data warehouses. In: SIGMOD.
ACM, New York, NY, USA, pp. 1917–1923, 2015.

[He08] He, B. et al.: Relational joins on graphics processors. In: SIGMOD. ACM, New York,
NY, USA, pp. 511–524, 2008.

[He09] He, B. et al.: Relational query coprocessing on graphics processors. TODS 34 (4), 2009.
[He12] Hellerstein, J. M. et al.: The MADlib analytics library or MAD skills, the SQL. PVLDB

5 (12), pp. 1700–1711, 2012.
[He13] Heimel, M. et al.: Hardware-oblivious parallelism for in-memory column-stores. PVLDB

6 (9), pp. 709–720, 2013.
[He21] HeteroDB: PG-Strom, 2021, https://en.heterodb.com.
[He24] Hereth, N.: AWS and NVIDIA extend collaboration to advance generative AI innovation,

Amazon, 2024, https : / / press .aboutamazon.com/2024/3 /aws- and- nvidia - extend-
collaboration-to-advance-generative-ai-innovation.

[HM12] Heimel, M.; Markl, V.: A first step towards GPU-assisted query optimization. In: ADMS.
Pp. 33–44, 2012, http://www.adms-conf.org/heimel_adms12.pdf.

[Ho14] Horowitz, M.: Computing’s energy problem (and what we can do about it). In: ISSCC.
IEEE, Washington, DC, USA, pp. 10–14, 2014.

https://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
https://fastdata.io/plasma-engine
https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://www.google.com/intl/en/search/howsearchworks/how-search-works/organizing-information
https://www.google.com/intl/en/search/howsearchworks/how-search-works/organizing-information
https://en.heterodb.com
https://press.aboutamazon.com/2024/3/aws-and-nvidia-extend-collaboration-to-advance-generative-ai-innovation
https://press.aboutamazon.com/2024/3/aws-and-nvidia-extend-collaboration-to-advance-generative-ai-innovation
http://www.adms-conf.org/heimel_adms12.pdf

[HP17] Hennessy, J. L.; Patterson, D. A.: Thread-level parallelism. In: Computer architecture
— A quantitative approach. 6th, Morgan Kaufmann, Cambridge, MA, USA, chap. 5,
pp. 367–462, 2017.

[HP19] Hennessy, J. L.; Patterson, D. A.: A new golden age for computer architecture. Commun.
ACM 62 (2), pp. 48–60, 2019.

[HTT09] Hey, T.; Tansley, S.; Tolle, K. M., eds.: The fourth paradigm: Data-intensive scientific
discovery. Microsoft Research, Redmond, WA, USA, 2009.

[HY11] He, B.; Yu, J. X.: High-throughput transaction executions on graphics processors. PVLDB
4 (5), pp. 314–325, 2011.

[IB18] IBM POWER9 NPU team: Functionality and performance of NVLink with IBM POWER9
processors. IBM Journal of Research and Development 62 (4/5), 9:1–9:10, 2018.

[IKS20] István, Z.; Kara, K.; Sidler, D.: FPGA-accelerated analytics: From single nodes to clusters.
Found. Trends Databases 9 (2), pp. 101–208, 2020.

[JC19] Johnston, D. B.; Caldwell, A.: Amazon Redshift reimagined: RA3 and AQUA, Amazon
Web Services, 2019, https://d1.awsstatic.com/events/reinvent/2019/NEW_LAUNCH_
Amazon_Redshift_reimagined_RA3_and_AQUA_ANT230.pdf.

[JDJ21] Johnson, J.; Douze, M.; Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans.
Big Data 7 (3), pp. 535–547, 2021.

[Jo21] Jouppi, N. P. et al.: Ten lessons from three generations shaped Google’s TPUv4i. In:
ISCA. IEEE, pp. 1–14, 2021.

[KBY17] Kumar, A.; Boehm, M.; Yang, J.: Data management in machine learning: Challenges,
techniques, and systems. In: SIGMOD. ACM, New York, NY, USA, pp. 1717–1722,
2017.

[Kh18] Khamis, M. A. et al.: AC/DC: In-database learning thunderstruck. In: DEEM. ACM, New
York, NY, USA, 8:1–8:10, 2018.

[Ki22] Kinetica: Kinetica, 2022, https://www.kinetica.com.
[KK20] Krulis, M.; Kratochvíl, M.: Detailed analysis and optimization of CUDA k-means

algorithm. In: ICPP. ACM, New York, NY, USA, 69:1–69:11, 2020.
[KLM21] Kumaigorodski, A.; Lutz, C.; Markl, V.: Fast CSV loading using GPUs and RDMA

for in-memory data processing. In: BTW. Vol. P-311. LNI, Gesellschaft für Informatik,
Bonn, Germany, pp. 19–38, 2021.

[KML15] Karnagel, T.; Müller, R.; Lohman, G. M.: Optimizing GPU-accelerated group-by and
aggregation. In: ADMS. Pp. 13–24, 2015, http: / /www.adms- conf .org/2015/gpu-
optimizer-camera-ready.pdf.

[KN11] Kemper, A.; Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory database system
based on virtual memory snapshots. In: ICDE. IEEE Computer Society, Los Alamitos,
CA, USA, pp. 195–206, 2011.

[Ko16] Koliousis, A. et al.: SABER: Window-based hybrid stream processing for heterogeneous
architectures. In: SIGMOD. ACM, New York, NY, USA, pp. 555–569, 2016.

[KS21] Kuusela, A.; Smullen, C.: Video coding unit (VCU). In: HCS. IEEE, Washington, DC,
USA, pp. 1–30, 2021.

[Ku19] Kunft, A. et al.: An intermediate representation for optimizing machine learning pipelines.
PVLDB 12 (11), pp. 1553–1567, 2019.

[La14] Lasi, H. et al.: Industry 4.0. Bus. Inf. Syst. Eng. 6 (4), pp. 239–242, 2014.

https://d1.awsstatic.com/events/reinvent/2019/NEW_LAUNCH_Amazon_Redshift_reimagined_RA3_and_AQUA_ANT230.pdf
https://d1.awsstatic.com/events/reinvent/2019/NEW_LAUNCH_Amazon_Redshift_reimagined_RA3_and_AQUA_ANT230.pdf
https://www.kinetica.com
http://www.adms-conf.org/2015/gpu-optimizer-camera-ready.pdf
http://www.adms-conf.org/2015/gpu-optimizer-camera-ready.pdf

[Le21] Lee, R. et al.: The art of balance: A RateupDB experience of building a CPU/GPU hybrid
database product. PVLDB 14 (12), pp. 2999–3013, 2021.

[Lo19] Lottarini, A. et al.: Master of none acceleration: A comparison of accelerator architectures
for analytical query processing. In: ISCA. ACM, New York, NY, USA, pp. 762–773,
2019.

[Lu18a] Lutz, C. et al.: Efficient and scalable k-means on GPUs. Datenbank-Spektrum 18 (3),
pp. 157–169, 2018.

[Lu18b] Lutz, C. et al.: Efficient k-means on GPUs. In: DaMoN. ACM, New York, NY, USA,
3:1–3:3, 2018.

[Lu20] Lutz, C. et al.: Pump up the volume: Processing large data on GPUs with fast interconnects.
In: SIGMOD. ACM, New York, NY, USA, pp. 1633–1649, 2020.

[Lu22a] Lutz, C.: Scalable data management using GPUs with fast interconnects, PhD thesis,
Berlin, Germany: TU Berlin, 2022.

[Lu22b] Lutz, C. et al.: Triton join: Efficiently scaling to a large join state on GPUs with fast
interconnects. In: SIGMOD. ACM, New York, NY, USA, pp. 1017–1032, 2022.

[Ma20] Maximize Market Research: Global GPU database market, 2020, https : / / www.
maximizemarketresearch.com/market-report/global-gpu-database-market/22455.

[Ma21] Market Data Forecast: GPU database market, 2021, https://www.marketdataforecast.
com/market-reports/gpu-database-market.

[Me16] Meraji, S. et al.: Towards a hybrid design for fast query processing in DB2 with BLU
acceleration using graphical processing units: A technology demonstration. In: SIGMOD.
ACM, New York, NY, USA, pp. 1951–1960, 2016.

[Mi17] Milic, U. et al.: Beyond the socket: NUMA-aware GPUs. In: MICRO. IEEE/ACM, New
York, NY, USA, pp. 123–135, 2017.

[Mi21] Michalke, A. et al.: An energy-efficient stream join for the Internet of Things. In: DaMoN.
ACM, New York, NY, USA, 8:1–8:6, 2021.

[NEK18] Nguyen, A.; Edahiro, M.; Kato, S.: GPU-accelerated VoltDB: A case for indexed nested
loop join. In: HPCS. IEEE, Washington, DC, USA, pp. 204–212, 2018.

[Ng19] Nguyen, G. et al.: Machine Learning and Deep Learning frameworks and libraries for
large-scale data mining: A survey. Artif. Intell. Rev. 52 (1), pp. 77–124, 2019.

[Nu24] Nugroho, D. P. A. et al.: Benchmarking stream join algorithms on GPUs: A framework
and its application to the state-of-the-art. In: EDBT. OpenProceedings.org, Konstanz,
Germany, pp. 188–200, 2024.

[Nv24a] Nvidia: Nvidia Blackwell architecture technical brief, Version 1.1, Nvidia, 2024, https:
//resources.nvidia.com/en-us-blackwell-architecture/blackwell-architecture-technical-
brief.

[Nv24b] Nvidia: Nvidia GH200 Grace Hopper Superchip architecture, Version 1.21, Nvidia, 2024,
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper.

[Om21] OmniSci: OmniSciDB, 2021, https://www.omnisci.com/platform/omniscidb.
[Pa17] Passing, L. et al.: SQL- and operator-centric data analytics in relational main-memory

databases. In: EDBT. OpenProceedings.org, Konstanz, Germany, pp. 84–95, 2017.
[Pa20] Paul, J. et al.: Improving execution efficiency of just-in-time compilation based query

processing on GPUs. PVLDB 14 (2), pp. 202–214, 2020.

https://www.maximizemarketresearch.com/market-report/global-gpu-database-market/22455
https://www.maximizemarketresearch.com/market-report/global-gpu-database-market/22455
https://www.marketdataforecast.com/market-reports/gpu-database-market
https://www.marketdataforecast.com/market-reports/gpu-database-market
https://resources.nvidia.com/en-us-blackwell-architecture/blackwell-architecture-technical-brief
https://resources.nvidia.com/en-us-blackwell-architecture/blackwell-architecture-technical-brief
https://resources.nvidia.com/en-us-blackwell-architecture/blackwell-architecture-technical-brief
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://www.omnisci.com/platform/omniscidb

[Pa21] Paul, J. et al.: MG-Join: A scalable join for massively parallel multi-GPU architectures.
In: SIGMOD. ACM, New York, NY, USA, pp. 1413–1425, 2021.

[PHH16] Paul, J.; He, J.; He, B.: GPL: A GPU-based pipelined query processing engine. In:
SIGMOD. ACM, New York, NY, USA, pp. 1935–1950, 2016.

[PMK14] Pirk, H.; Manegold, S.; Kersten, M. L.: Waste not. . . Efficient co-processing of relational
data. In: ICDE. IEEE Computer Society, Los Alamitos, CA, USA, pp. 508–519, 2014.

[PMS15] Pirk, H.; Madden, S.; Stonebraker, M.: By their fruits shall ye know them: A data analyst’s
perspective on massively parallel system design. In: DaMoN. ACM, New York, NY, USA,
5:1–5:6, 2015.

[Ra20] Raza, A. et al.: GPU-accelerated data management under the test of time. In: CIDR.
www.cidrdb.org, pp. 1–11, 2020, http://cidrdb.org/cidr2020/papers/p18-raza-cidr20.pdf.

[Ra21] Rateup: RateupDB, 2021, http://www.rateup.com.cn/dist/#/product.
[RBM22] Rosenfeld, V.; Breß, S.; Markl, V.: Query processing on heterogeneous CPU/GPU systems.

ACM Comput. Surv. 55 (1), 2022.
[Re20] Reuther, A. et al.: Survey of machine learning accelerators. In: HPEC. IEEE, Washington,

DC, USA, pp. 1–12, 2020.
[Rh18] Rhu, M. et al.: Compressing DMA engine: Leveraging activation sparsity for training

deep neural networks. In: HPCA. IEEE Computer Society, Los Alamitos, CA, USA,
pp. 78–91, 2018.

[RM16] Root, C.; Mostak, T.: MapD: A GPU-powered big data analytics and visualization
platform. In: SIGGRAPH. ACM, New York, NY, USA, 73:1–73:2, 2016.

[Ro13] Rossbach, C. J. et al.: Dandelion: A compiler and runtime for heterogeneous systems. In:
SOSP. ACM, New York, NY, USA, pp. 49–68, 2013.

[Ro19] Rosenfeld, V. et al.: Performance analysis and automatic tuning of hash aggregation on
GPUs. In: DaMoN. ACM, New York, NY, USA, 8:1–8:11, 2019.

[RRW18] Roberts, S.; Ramanna, P.; Walthour, J.: AC922 data movement for CORAL. In: HPEC.
IEEE, Washington, DC, USA, pp. 1–5, 2018.

[RT17] Rui, R.; Tu, Y.: Fast equi-join algorithms on GPUs: Design and implementation. In:
SSDBM. ACM, New York, NY, USA, 17:1–17:12, 2017.

[Sa10] Satish, N. et al.: Fast sort on CPUs and GPUs: A case for bandwidth oblivious SIMD
sort. In: SIGMOD. ACM, New York, NY, USA, pp. 351–362, 2010.

[Sc20] Schüle, M. E. et al.: Freedom for the SQL-lambda: Just-in-time-compiling user-injected
functions in PostgreSQL. In: SSDBM. ACM, New York, NY, USA, pp. 1–12, 2020.

[Sc21] Schüle, M. E. et al.: In-database machine learning with SQL on GPUs. In: SSDBM. ACM,
New York, NY, USA, pp. 25–36, 2021.

[Sh19] Shen, J. et al.: Introducing AresDB: Uber’s GPU-powered open source, real-time analytics
engine, 2019, https://eng.uber.com/aresdb.

[Sh20] Shanbhag, A. et al.: Large-scale in-memory analytics on Intel Optane DC persistent
memory. In: DaMoN. ACM, New York, NY, USA, 4:1–4:8, 2020.

[Sh21] Shaw, D. E. et al.: Anton 3: Twenty microseconds of molecular dynamics simulation
before lunch. In: SC. ACM, New York, NY, USA, 1:1–1:11, 2021.

[Si19] Sioulas, P. et al.: Hardware-conscious hash-joins on GPUs. In: ICDE. IEEE, Washington,
DC, USA, pp. 698–709, 2019.

http://cidrdb.org/cidr2020/papers/p18-raza-cidr20.pdf
http://www.rateup.com.cn/dist/#/product
https://eng.uber.com/aresdb

[SJ17] Stehle, E.; Jacobsen, H.: A memory bandwidth-efficient hybrid radix sort on GPUs. In:
SIGMOD. ACM, New York, NY, USA, pp. 417–432, 2017.

[SMY20] Shanbhag, A.; Madden, S.; Yu, X.: A study of the fundamental performance characteristics
of GPUs and CPUs for database analytics. In: SIGMOD. ACM, New York, NY, USA,
pp. 1617–1632, 2020.

[Sp17] Sparks, E. R. et al.: KeystoneML: Optimizing pipelines for large-scale advanced analytics.
In: ICDE. IEEE Computer Society, pp. 535–546, 2017.

[SQ22] SQream: SQream DB, 2022, https://sqream.com/product/data-acceleration-platform/sql-
gpu-database.

[St18] Starke, W. J. et al.: IBM POWER9 memory architectures for optimized systems. IBM
Journal of Research and Development 62 (4/5), 3:1–3:13, 2018.

[St21] Starke, W. J. et al.: IBM’s POWER10 processor. IEEE Micro 41 (2), pp. 7–14, 2021.
[Su20] Sun, Y. et al.: Summarizing CPU and GPU design trends with product data, 2020, arXiv:

1911.11313v2 [cs.DC].
[Sv21] Svedin, M. et al.: Benchmarking the Nvidia GPU lineage: From early K80 to modern

A100 with asynchronous memory transfers. In: HEART. ACM, New York, NY, USA,
9:1–9:6, 2021.

[Th24] Thiagarajan, M.: Announcing world’s largest, first zettascale AI supercomputer in the
cloud, Oracle, 2024, https://blogs.oracle.com/cloud-infrastructure/post/worlds-largest-ai-
supercomputer-in-the-cloud.

[To18] Tomé, D. G. et al.: Optimizing group-by and aggregation using GPU-CPU co-processing.
In: ADMS. Pp. 1–10, 2018, http://www.adms-conf.org/2018-camera- ready/tome_
groupby.pdf.

[To24] Top500: Top500 Highlights, 2024, https://www.top500.org/lists/top500/2024/11/highs/.
[Ve24] Vegas, M.: Microsoft adopts NVIDIA Blackwell to power the next frontier of AI

supercomputing, Microsoft, 2024, https : / / techcommunity . microsoft . com / blog /
azurehighperformancecomputingblog/microsoft-adopts-nvidia-blackwell- to-power-
the-next-frontier-of-ai-supercomputin/4303541.

[Wu14] Wu, L. et al.: Q100: The architecture and design of a database processing unit. In:
ASPLOS. ACM, New York, NY, USA, pp. 255–268, 2014.

[Xi18] Xin, D. et al.: Helix: Holistic optimization for accelerating iterative machine learning.
PVLDB 12 (4), pp. 446–460, 2018.

[Ya17] Yabuta, M. et al.: Relational joins on GPUs: A closer look. IEEE Trans. Parallel Distrib.
Syst. 28 (9), pp. 2663–2673, 2017.

[YLZ13] Yuan, Y.; Lee, R.; Zhang, X.: The yin and yang of processing data warehousing queries
on GPU devices. PVLDB 6 (10), pp. 817–828, 2013.

[Ze19] Zeuch, S. et al.: Analyzing efficient stream processing on modern hardware. PVLDB
12 (5), pp. 516–530, 2019.

[Zh21] Zhang, Y. et al.: Distributed deep learning on data systems: A comparative analysis of
approaches. PVLDB 14 (10), pp. 1769–1782, 2021.

[Zi20] Zion Market Research: GPU database market — Global industry analysis, 2020, https:
//www.zionmarketresearch.com/report/gpu-database-market.

https://sqream.com/product/data-acceleration-platform/sql-gpu-database
https://sqream.com/product/data-acceleration-platform/sql-gpu-database
https://arxiv.org/abs/1911.11313v2
https://blogs.oracle.com/cloud-infrastructure/post/worlds-largest-ai-supercomputer-in-the-cloud
https://blogs.oracle.com/cloud-infrastructure/post/worlds-largest-ai-supercomputer-in-the-cloud
http://www.adms-conf.org/2018-camera-ready/tome_groupby.pdf
http://www.adms-conf.org/2018-camera-ready/tome_groupby.pdf
https://www.top500.org/lists/top500/2024/11/highs/
https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/microsoft-adopts-nvidia-blackwell-to-power-the-next-frontier-of-ai-supercomputin/4303541
https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/microsoft-adopts-nvidia-blackwell-to-power-the-next-frontier-of-ai-supercomputin/4303541
https://techcommunity.microsoft.com/blog/azurehighperformancecomputingblog/microsoft-adopts-nvidia-blackwell-to-power-the-next-frontier-of-ai-supercomputin/4303541
https://www.zionmarketresearch.com/report/gpu-database-market
https://www.zionmarketresearch.com/report/gpu-database-market

